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Turbulence-Induced Ionization Fluctuations 

in the Lower Ionosphere 

Reginald J. Hill and Kenneth A. Mitton 

ABSTRACT. As part of a larger research project to calculate radar scattering from the lower 

ionosphere using numerical simulation of internal wave breaking and shear instabilities, sub grid-scale 

turbulence advection modeling is required to calculate the radar-scattering cross section from the 

spectrum of electron-concentration fluctuations. The plasma dynamics of multiconstituent ambipolar 

diffusion is studied to obtain the equations governing the mixing-ratio fluctuations of the ionized 

species advected by turbulent air. These equations are used with the turbulence advection model to 

obtain coupled equations for the spectra and cospectra of the ion's mixing ratio and of the potential 

temperature. The solutions of these equations determine the spectrum of electron-concentration 

fluctuations. Many example solutions of the equations are presented which include cases of many 

ion species and cases of very massive ions. 

1. INTRODUCTION 

1.1 Introduction to the Current Study 

Numerical simulations of turbulence will calculate breaking internal-wave events and 

Kelvin-Helmholtz instabilities for conditions in the lower ionosphere. These simulations will be 

used to advect initial profiles of ionization to determine the ionization fluctuations at the smallest 

scales that can be resolved by the simulation. These smallest resolved scales are much larger 

than the Bragg scales that contribute to radar backscatter of relevant radars. To use the 

simulation to predict radar backscatter, it is necessary to use subgrid-scale modeling to determine 

the power spectrum of electron-concentration fluctuations. Evaluation of this spectrum at a 

radar's Bragg wavenumber determines the scattering cross section. Of particular interest are the 

polar mesospheric summer echoes (PMSE), which might be caused by the presence of massive 

ions. H_owever, PMSE are "only one specific application of our general formulation. 

The subgrid-scale model is an application of the turbulence advection model and plasma 

dynamics developed by Hill and Bowhill (1976). The method in this report requires equations 

that are coupled by the ambipolar electric field. 

In section 2, we formulate the relevant plasma dynamics for an arbitrary number of 

ionized species. The equations are expressed in terms of mixing ratios rather than concentrations 

of the species because the mixing ratios are conserved quantities in the numerical simulation. 

In section 3, the plasma dynamics is specialized to describe the phenomenon of multispecies, 



quasi-neutral plasma diffusion. This diffusion phenomenon acts to dissipate the ionization 

fluctuations. In section 4, a perturbation analysis is used to linearize the nonlinear plasma 

diffusion equations. The result is coupled linear equations for the Fourier transforms of the 

mixing ratios of all the ion species. 

In section 5, the"!inearized equations are used to formulate coupled equations for the 

ensemble-averaged spectra and cospectra of the mixing ratios for the ion species. In section 6, 

the turbulence advection model is applied to the coupled equations, resulting in equations that 

can be solved by a predictor-corrector integration algorithm. Section 6.1 presents the simplest 

case of local stationarity and no coupling to temperature fluctuations. Section 6.2 describes the 

complication caused by coupling to temperature fluctuations. Section 6.3 presents the 

nonstationary case. The boundary conditions for these several cases are given in section 8. 

Boundary conditions are needed to initialize the predictor-corrector algorithm. The limitations of 

the nonstationary case caused by the approximations employed are discussed in section 9. 

The power spectrum of electron-concentration fluctuations is needed for calculation of 

the radar-scattering cross section. Section 7 shows how to calculate this electron-concentration 

spectrum from the advection model's determination of mixing-ratio and potential-temperature 

spectra and cospectra. The relevance of the electron-concentration spectrum to the radar cross 

section and scattered power is given in section 12. 

Section 11 gives numerous examples of the numerical solution for the various spectra and 

cospectra. The input parameters for these computed examples are somewhat arbitrary. When 

applied with the numerical simulation of turbulence generation, the numerical simulations will 

provide all of the relevant input parameters. Section 10 defines the dissipation rates that are 

input parameters for the turbulence advection model and shows how these dissipation rates will 

be calculated from the numerical simulations. 

Plasma transport coefficients are needed in the equations. These coefficients depend on 

the ion-neutral momentum-transfer collision rate. The Appendix explains our calculation of the 

ion-neutral momentum-transfer collision rate. 

1.2 Historical Introduction to Ionospheric Applications 

It is important to place the present work in perspective relative to other work done on this 

subject in the 1970s and the newer work on PMSE in the 1990s. First, we discuss the studies of 

VHF radar scattering from the mesosphere which took place during the 1970s at Jicamarca, Peru. 

The turbulence advection model that we use in the current study was developed to explain those 

observations. We examine the ability of the model to predict the scattered power for the 
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Jicamarca radar and the sensitivity of the predicted cross section to changes in energy-dissipation 

rate and Schmidt number. Second, we review more recent theory and observations that confirm 

and extend the applicability of the advection model. Third, we describe misunderstandings 

regarding the application to the PMSE phenomenon of both the turbulence advection model and 

the theory of multiconstituent ionization diffusion. 

Prabhat K. Rastogi investigated the scattering of 50-MHz radar waves from the equatorial 

D-region at Jicamarca, Peru, in the early and mid-1970s. He recognized that the Bragg 

wavenumber was deep within the viscous range of the energy spectrum for plausible energy

dissipation rates at those altitudes. He thereby determined that the backscattered power 

significantly exceeded that which could be predicted on the basis of the assumption that the 

electron-concentration spectrum had the same form as either the energy or temperature spectra of 

air. The result was a research program to predict the scattered power; the report by Hill and 

Bowhill (1976) evolved from that research. 

The ions had not been observed above Jicamarca during the radar scattering studies, but 

measurements at other locations and times showed heavy hydrated positive and negative ions at 

the altitudes of interest and simpler ions at higher altitudes. Because of the lack of simultaneous 

observation of ion composition during radar observations, it was simplest to assume that the ions 

of both negative and positive charge had the same diffusion coefficient, although a general theory 

of multi-ion diffusion had been derived by Hill and Bowhill (1976). For the observed ion 

masses, it was sufficient to calculate the diffusion coefficients from the polarization interaction; 

that is, the ions were not so large as to require a hard-sphere repulsion. The essential 

simplification of equal ion diffusion coefficients is that the electrons then behave as though they 

have an effective diffusion coeffic:ient; this can be seen in equations (4.105a,b) of Hill and 

Bowhill (1976) or (17a,b) of Hill (1978a). However, the electrons do not have an effective 

diffusion coefficient if all the ions do not have the same diffusion coefficient; this can be seen in 

equations (4.109a,b) and (4.110a) of Hill and Bowhill (1976) or (20a,b) of Hill (1978a). In fact, 

to quote Hill (1978a), "The linearized version of these equations implies the existence of many 

diffusion modes: the number of these modes is one less than the number of charged species." 

The effect on the electron concentration of unequal ion diffusion coefficients can be that the 

electrons are thrust out of or into the ion perturbation because the electrons go wherever they 

must to maintain approximate charge neutrality, as illustrated by Hill (1978a) and Hill and 

Bow hill (1976). This effect is very different from the case of equal diffusion coefficients of all 

the ions, a case that gives an effective electron diffusion coefficient. 

For the case of an effective electron diffusion coefficient, Fig. 8.2 in Hill and Bowhill 

(1976) shows the Schmidt number effect on the electron-concentration spectrum, and Tables 9.1 
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and 9.2 in Hill and Bow hill (1976) give tile Schmidt numbers and predict cross sections for radar 

backscatter. However, the Bragg wavenumber used to generate Table 9.2 was in error, so the 

predicted cross sections are in error. That error is corrected here. One unfortunate aspect of the 

evaluation of scattering cross sections by Hill and Bowhill (1976) was the necessity of guessing 

the dissipation rates. Here, knowledge from numerical simulation of the Kelvin-Helmholtz 

instability is used to estimate the dissipation rates and, thereby, the radar scattering cross 

sections. 

Current understanding of the Kelvin-Helmholtz instability in the upper atmosphere 

suggests a billow length of about 4 km, which results in a turbulent layer about 2 km in depth. 

Entrainment of ionization is greatest at the top and bottom of the layer, whereas radio scattering 

strength requires that the energy dissipation rate also be large. Numerical simulation of the 

instability shows that energy-dissipation peaks near the middle of the layer. The result of large 

entrainment of ionization at the edges of the turbulent layer and of energy dissipation increasing 

toward the middle of the layer is that scattering strength is greatest in two zones separated 

vertically by about 1 km. Therefore, a single Kelvin-Helmholtz instability produces a turbulent 

layer about 2 km in depth that appears as two scattering layers separated by about 1 km. Since 

the horizontal wind differs at the two scattering layers, the Doppler spectrum has the appearance 

observed by Rastogi and Bowhill (1976). Indeed, Rastogi and Bowhill (1976) interpreted their 

observed Doppler spectra as evidence for two scattering layers separated by at least 1 km. It is 

now clear that this observation can result from a single unstable Kelvin-Helmholtz billow. 

Rastogi and Woodman (1974) used the Jicamarca radar to observe scattered power that is 

4--18 dB greater than the incoherent scatter power (assuming 500 electrons per cubic centimeter). 

For two dominant scattering zones of depth 300 m each and the 5000-m range resolution of the 

Jicarnarca radar as implemented by Rastogi and Woodman (1974), the measurements of scattered 

power by Rastogi and Woodman (1974) suggest that the scattering cross section per unit volume 

within the dominant scattering zones is 5 x 10·21 to 1.3 x 10"19 em·'. 

One can evaluate the scattering cross-section formula (9.2) in Hill and Bowhill (1976) 

using either model2 or model4 by Hill (1978b). Because the Schmidt numbers are sufficiently 

high, these models can be approximated by their asymptotic formulas. Hill (1978b) showed that 

these formulas correspond to Batchelor's(1959) and Kraichnan's (1968) theories for models 2 

and 4, respectively. The asymptotic formula for model 2 was used in the evaluation by Hill and 

Bowhill (1976). Model4 was shown to be more accurate in comparison with data than model2 

by Hill (1978b); this was recently confirmed by Bogucki eta!. (1997) and Chasnov (1998) by 

means of comparing numerical simulation of scalar advection with Batchelor's and Kraichnan's 
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theories. Using equation (9.2) of Hill and Bow hill (1976), the formulas for the cross section per 

unit volume are as follows: 

PB s 4.08 sc-I (Kikd)2 

PK s 5.52 sc-112 (Kikd) 

(model2) 

(model4) 

Here, cr is the cross section per unit volume, r. is the classical electron radius, X is the dissipation 

rate of electron-concentration fluctuations, K is the Bragg wavenumber, E is the energy 

dissipation rate, vis kinematic viscosity, kd is Kolmogorov' s dissipation wavenumber, and Sc is 

the Schmidt number. 

For the height of 70 km, which corresponds to the height of the observation of Rastogi 

and Woodman (1974), we use the Schmidt number from Table 9.1 of Hill and Bow hill (1976); 

namely, Sc = 1.1. The kinematic viscosity at 70 km is v = 1643 cm2 s·1
• We take E = 

1000 cm2 s·3, which is obtained from the numerical simulation of the Kelvin-Helmholtz 

instability at an active stage of its development. At this same stage, the numerical simulation 

gives a dissipation rate of potential-temperature fluctuations of 0.01 K2 s·1 in the two entrainment 

zones. The initial potential-temperature gradient of the simulation was 4.73 K km·1
, which gives 

a temperature gradient of -4.75 K km.1
, a reasonable temperature gradient for the height of 

70 km. The electron-concentration dissipation rate, x, can be obtained by multiplying the 

potential-temperature dissipation rate by the square of the ratio of the gradient of electron

concentration mixing ratio to the gradient of the potential temperature and also multiplying by 

the square ofthe concentration of neutrals. The electron-concentration gradient at 70 km for 

active sun is about 54 cm·3 km"1
, and the contribution of the height variation of the neutral density 

for an electron concentration of 500 cm·3 is 76 cm·3 km-1
• Adding these, we obtain 130 cm·3 km-1 

for the total gradient of the electron mixing ratio times the neutral density. The resultant 

electron-concentration dissipation rate corresponding to the simulation and to a height of 70 km 

is x= 7.5 cm·6 s·1
• The Bragg wavenumber of the Jicamarca radar is k = 2.1 x 10·2 rad cm·1

• 

Evaluation ofthe cross section gives 
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Ps = 3.44 

PK = 5.07 

a = { 2 .x 10-
19 

cm-
1 

3 x 10-19 cm-1 
(model2) 
(model4). 

From the measurements of Rastogi and Woodman (1974), recall that the cross section per 

unit volume within the dominant scattering zones is typically in the range of 5 x 10"21 to 1.3 x 

10"19 cm·1
• By using a very active stage of the Kelvin-Helmholtz instability, we obtain a cross 

section at the upper end of the observed range. Clearly, evaluation of the cross section at less 

active stages would account for the lesser values of the cross section. Significantly, the 

arguments of the exponentials, namely, p8 and pK' are large. Indeed, the Bragg wavenumber is 

nearly equal to the Kolmogorov wavenumber for the height of70 km and e = 1000 cm2 s·3• The 

large value of the argument of the exponentials results in the sensitivity of the scattered power to 

the variation of e that was discovered by Rastogi and Bowhill (1976). Also significant is the 

sensitivity of the arguments of the exponentials to the Schmidt number Sc. For instance, 

consider replacing the value of Sc with the value pertaining to neutral density, which is the same 

as the Prandtl number, namely, Sc = Pr = 0.72. With this replacement, our evaluation of the 

cross section per unit volume becomes 3.4 x 10·20 cm·1 for model2 and 1.1 x 10"19 cm·1 for 

model4. Thus, at least when using Batchelor's (1959) theory (i.e., model2), one would find it 

difficult to predict the largest observed cross sections if Sc = 0.72. 

The importance of the enhanced Sc and its evaluation from the theory of ion-neutral 

collisions is a central theme of Hill and Bow hill (1976). Rastogi was well aware of the Schmidt 

number effect at the earliest stages of the research. Rastogi (private communication, 1975) 

suggested to one of the authors (Hill) that the Schmidt number would be very large if the ions 

were very large, and he suggested that this would result in radio scatter for frequencies 

substantially larger than 50 MHz. He further suggested that noctilucent clouds were evidence 

that such large ions could exist. However, there was no evidence that the very large ions would 

be present in great enough numbers, and it was unlikely that the equatorial ionosphere observed 

by the Jicamarca radar would contain such very large ions. What is remarkable about this insight 

by Rastogi is that it was a prediction of the PMSE phenomenon many years before its discovery. 

Kelley eta!. (1987) and Kelley and Ulwick (1988) proposed that very large ions produce 

large Schmidt numbers in the summer polar mesopause region and that the Schmidt number 

effect produces enhanced radar scattering. This idea was studied on the basis of multiconstituent 
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ionization diffusion by Cho eta!. (1992) and Cho (1993), who used as the basis for their 

development the multiconstituent ionization diffusion theory derived by Hill and Bow hill (1976) 

and further developed by Hill (1978a). However, the use of the multiconstituent ionization 

diffusion theory by Cho et a!. (1992) is incorrect, as we show in the next paragraph. Their error 

appears to originate in the misconception that the turbulence advection model requires that the 

diffusion theory be reduced to having an "effective electron diffusivity" as its sole descriptor. 

This is not a limitation of the turbulence advection model. 

The case of electrons, one type of positive ion having diffusivity D+ and one type of 

negative ion having diffusivity D_, is sufficient to show that the effective electron diffusivity 

used by Cho eta!. (1992) and Cho (1993) is incorrect. As explained by Hill (1978a), the case in 

which D+ is not equal to D_ has two diffusion modes, having diffusion coefficients that differ 

from the effective electron diffusivity determined by Cho eta!. (1992) and Cho (1993). Figure 3 

of Hill (1978a) shows the case of ten times as many negative ions than positive ions and D+ = 

10 D_. (This case is qualitatively similar to negatively charged aerosols, for which D+ >> D_.) 

The behavior of electrons in this figure is not that described by an effective electron diffusivity; 

the electrons are thrust away from the ions' perturbations by the ambipolar electric field. As 

shown by Hill (1978a), this situation can be reversed by a different initial condition. That is, if 

the negative aerosols have a local enhancement where positive ions have a local deficit, then the 

inward diffusion of positive ions and outward diffusion of negative aerosol cause the electrons to 

rush inward. Such an initial condition could arise in the ionosphere. Thus, the initial condition 

can control the nature of the diffusion. Another case of this control by the initial condition is 

given by Hill (1978a). In Appendix A of Cho (1993), he observed that his simulations of the 

diffusion equations had two distinct modes that may have very different corresponding time 

scales and that the simulations were sensitive to the initial conditions. He nonetheless obtained 

an effective electron diffusivity by finding an e·1 time of the perturbation. This does not produce 

a useful or correct descriptor for the problem. 

One misunderstanding caused by Cho's (1993) insistence that his simulations produce an 

effective electron diffusivity is that the Schmidt number cannot be large unless the total charge 

on the aerosols is at least 1.2 times the electron charge density if the aerosols are negatively 

charged and at least 0.6 times the electron charge density if the aerosols are positively charged. 

This misunderstanding appears in Cho eta!. (1992, 1996), as well as in Cho (1993). Certainly, a 

significant charge on very large ions enhances electron-concentration fluctuations at small spatial 

scales. However, the Schmidt numbers are determined from ion-neutral momentum-transfer 

collision frequencies; as such, the Schmidt numbers for multiconstituent ionization diffusion are 

independent of charge densities. 
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There are several other inaccuracies with regard to the multiconstituent ionization 

diffusion theory by Cho (1993). Because his equations apply to arbitrary charge of the ions, he 

stated that his diffusion theory was more general than that by Hill (1978a). In fact, the theory by 

Hill (1978a) does apply to multiply charged ions, as is clear from the derivation of that theory, 

as well as from the yet more general theory of modes of a weakly ionized plasma by Hill and 

Bowhill (1977a). In addition, the theory by Hill (1978a) is more general than that by Cho (1993) 

in that it includes the case of nonzero De bye length, a case that is of some interest for the 

smallest spatial scales of the ionization fluctuations. 

It seems that Cho (1993) used an incorrect value of the parameter describing the 

transition between the inertial- and viscous-convective ranges. Hill (1978b) showed that the 

correct onset of the viscous-convective range was at such a low wavenumber relative to 

Kolmogorov's scaling wavenumber that a nascent viscous-convective range appears even for a 

Schmidt number less than unity. On this basis, one should clearly see about a decade of viscous

convective range in Cho's (1993) Figs. 4.3 and 4.5 for the case of a Schmidt number equal to 10; 

in fact, the viscous-convective range is hardly evident for that case. 

One motivation for the current study is to put the turbulence advection modeling of 

multiconstituent ionization on a correct basis. In particular, a correct description of the role of 

very large ions in the PMSE phenomenon is sought. 

1.3 Introduction to Turbulent Advection Modeling 

Since the mid-1970s, several advances in the turbulence advection model have added to 

its reliability. The turbulence advection model of Hill and Bowhill (1976), as well as several 

other models, was compared with data by Hill (1978b). The data were the temperature power 

spectra measured in air, water, and mercury, for which the ratio of thermal diffusivity to 

kinematic viscosity are 0.7, 9.0, and 0.02, respectively (these ratios are the Prandtl numbers), as 

well as the ammonium acetate power spectrum for which the ratio of molecular diffusivity to 

kinematic viscosity is 700 (this ratio is the Schmidt number). This comparison with data showed 

the model to be in excellent agreement with data for this enormous range of Prandtl and Schmidt 

numbers. Furthermore, the comparison established an accurate value for the wavenumber of the 

transition between inertial- and viscous-convective ranges of the spectrum relative to 

Kolmogorov's dissipation wavenumber. (The latter is the inverse of the Kolmogorov 

microscale.) This ratio of the transition wavenumber to Kolmogorov's dissipation wavenumber 

is one parameter of the model. The comparison with data also established an accurate value of 

the other parameter of the model, namely, the width of the transition between the inertial- and 
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viscous-convective ranges. Thus, the model has no unknown parameters, and no parameters can 

be adjusted. 

The irradiance scintillations of laser light propagating through the turbulent atmosphere 

can be used as a stringent test of the model's accuracy. This is because irradiance scintillations 

are sensitive to the dissipation range and to the features in the refractive-index spectrum that arise 

due to the transition between the inertial-convective range, the viscous-convective range, and the 

viscous-diffusive range. Atmospheric scintillation experiments by Hill and Ochs (1978), Ochs 

and Hill (1985), Azoulay et al. (1988), Frehlich (1992), Hill and Ochs (1992), and Thiermann 

and Grassl (1992) have shown that the model spectrum must be used to quantitatively predict 

weak scintillation. (Weak scintillation refers to the case of irradiance fluctuations much less than 

the mean irradiance and has a well-known theory.) Recently, comparison of experimental data 

by Consortini et al. (1993) with data from numerical simulation of wave propagation by FlatU\ 

et al. (1993) has shown that the model is necessary to quantitatively predict strong scintillation 

from atmospheric propagation. Importantly, no alteration of the model's parameters from the 

values established by Hill (1978b) was made (or necessary) for these model verifications. These 

stringent tests give confidence that the model produces quantitatively correct spectra of advected 

scalars. 

Hill (1978c) demonstrated that the turbulence advection model applies to the cospectrum 

of two scalar quantities advected by the same turbulent flow. This is important because the 

simultaneous conservation equations for the various ionization constituents (such as electrons, 

positive ions, aerosols, temperature, etc.) give rise to coupled equations for the power spectra of 

the scalars and the cospectra of pairs of the scalars. The coupling arises because of the coupled 

nature of the mnlticonstituent ionization diffusion equations (coupled because of the ambipolar 

electric field), or because of the coupled nature of the photochemical rate equations, or both. 

Thus, the ability to calculate cospectra is essential and available. The fact that the turbulent

advection model has the ability to calculate spectra and cospectra for the case of scalars that have 

coupled equations is the advection model's essential advantage over a formula for a given 

scalar's spectrum that fits data for that one spectrum. The turbulent advection of the 

photochemically coupled upper D-region, including ambipolar diffusion and diffusion of heat 

and nitric oxide, has been modeled by Hill (1981). In that study, nitric oxide NO, its ion NO+, 

electrons, and temperature (because of the temperature dependence of the recombination rate of 

NO+ with electrons) were considered, yielding six coupled equations for spectra and cospectra. 

The Obukhov-Corrsin constant ~ is the proportionality constant in the inertial-convective 

range; ~relates spectra and cospectra to their corresponding dissipation rates. Hill (1989) 

showed that ~has the same value for all spectra and cospectra; thus, a single empirical value of~ 
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can be used with confidence for all the spectra and cospectra. This is important because it gives 

confidence to our ability to relate spectral and cospectrallevels to the dissipation rates 

determined by the numerical simulations of gravity-wave breaking and Kelvin-Helmholtz 

instability. Either of these spectral and cospectrallevels or the dissipation rates are the quantities 

needed to initiali21e the turbulence advection model. 

Hill (1978b) compared the spectral models with data from high Reynolds number 

turbulent flow. For application to the lower ionosphere, it is of interest to compare the models 

with data from moderate Reynolds number turbulence because it is likely that turbulence in the 

mesosphere has moderate-to-low Reynolds numbers. Bogucki eta!. (1997) have made relevant 

comparisons of models with numerical simulations for moderate Reynolds number. Their 

comparisons of their spectra with Kraichnan's (1968) and Batchelor's (1959) theories are, in 

essence, comparisons with model4 and model2 by Hill (1978b), respectively. Bogucki eta!. 

(1997) showed that the same models and values of the models' parameters that apply at very high 

Reynolds numbers also apply equally well at moderate Reynolds numbers. They also showed 

better agreement of data with Kraichnan' s theory than with Batchelor's theory, which agrees with 

the comparison with data by Hill (1978b). This fact is also confirmed by Chasnov (1998), who 

used numerical simulation of turbulence in two-dimensional space which he compared with both 

Batchelor's theory and Kraichnan's theory for the viscous-convective and viscous-diffusive 

ranges. 

Despite the superiority of model 4 over model 2, model 2 is used in this study (see 

section 6). The reason is that model 4, and hence also Kraichnan' s theory, must be integrated 

from high wavenumbers toward low wavenumbers; otherwise, there is numerical swamping from 

the unwanted solution of the second-order differential equation. Because of the complexity of 

the diffusive ranges of the ions, it seems extremely difficult to derive the boundary conditions at 

high wavenumbers that are needed to initialize the calculation of model4. 

For the diffusive ranges, the ambipolar electric field causes complicated coupling of all 

the ions, which, in tum, results in complicated relationships between dissipation rates and 

diffusive-range spectral levels. The direct numerical simulation provides the dissipation rates of 

uncoupled passive scalars. These dissipation rates can be used to calculate the boundary 

conditions in the inertial-convective range for the purpose of integrating the equations toward 

high wavenumbers. Model 2 is the expedient model for this purpose because, unlike model4, 

there is no difficulty in integrating model 2 toward high wavenumbers. 

In section 6.3 we consider modeling nonstationary turbulence advection. In this case 

there exists temporal dependency of the energy-dissipation rate and the dissipation rates of scalar 

variance and covariance. Independently, Chasnov (1998) derived similar equations to those that 
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we obtain in section 6.3. We discuss the relationship between his result and ours in section 6.3. 

He considered the case of the viscous-convective and viscous-diffusive range of a single scalar. 

In contrast, we include the inertial-convective range and the transition between the inertial

convective range and the two viscous ranges, and we consider the more complicated case of 

coupled scalars. An important feature of Chasnov's (1998) study is his comparison of the 

nonstationary model with data obtained from calculations of two-dimensional turbulence. The 

good agreement of the model with the data that he obtained gives us confidence in our treatment 

of the nonstationary case. 

2. EQUATIONS FOR PLASMA DYNAMICS COUPLED TO HYDRODYNAMIC 

TURBULENCE 

To treat the turbulent advection of ionization, it is necessary to derive continuity 

equations for the charged species. This investigation uses the multifluid continuum momentum 

and the continuity equations of plasma dynamics. The continuum equations are obtain'ed by 

multiplying the Boltzmann equation by powers of the particle velocities and averaging (Holt and 

Haskell, 1965). This produces an infinite hierarchy of coupled equations that requires a closure 

hypothesis. This study uses the isotropic, isothermal closure for the particle pressures. The time 

scales involved in turbulent advection are much longer than the thermal-relaxation time for the 

species considered. Therefore, the charged species have temperatures equal to the local 

atmospheric temperature throughout the advection process, and gradients in the temperature of a 

charged species exist only if a gradient exists in the atmospheric temperature. The thermal

diffusion effect due to local gradients in the atmospheric temperature is negligible. 

Hill (1979) derived equations for multiconstituent plasma, including the effects of the 

magnetic field and motions of the neutral gas and showed that the magnetic field could be 

neglected for application to the lower ionosphere provided that the spatial extent of the 

fluctuations was not too great. Excluding the magnetic field, and without simplifying the 

pressure term, equation (8) by Hill (1979) is 

The continuity equation (2) by Hill (1979) is 

aN ar" + y · (N. Y.) = z.- L. . 
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Our notation list is: 

N. is the concentration of species u 

N is the concentration of neutral gas 

Q. = N.fN is the mixing ratio of species u 

P. is the pressure of species u 

P is atmospheric pressure, both hydrostatic and dynamical 

T
0 

is the temperature in energy units of species u; T
0 

= T because of thermal equilibrium 

T is the absolute temperature of the neutral gas in energy units; that is, 

absolute temperature multiplied by Boltzmann's constant 

Ya is the velocity of species u 

y is velocity of the neutral gas 

Yu = Ya- Y is the velocity of species u relative to the neutral gas 

r = N v is the flux of species u relative to the neutral gas ,..,u a.-a 

E is the total electric field 

li is acceleration due to gravity 

a is acceleration of the neutral gas 

q
0 

is the charge of species u 

e is the elementary unit of charge, i.e., the magnitude of the electron's charge 

s. = q
0
/e is the charge number (including the sign) of species u 

m
0 

is the mass of species u 

m is the mass of neutral molecules 

v. is the momentum-transfer collision rate for species u 

fla = ~ is the mobility of species u 
maYa 
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D = a 
T 

is the diffusion coefficient of the concentration of species u 

.,2)a = ___!__ = NDa is a diffusion coefficient of the mixing ratio Qa 
mava 

Q = L qa Qa is the mixing ratio of net charge density 
a 

! = ~ qa !'a is the current density relative to the flow of neutral gas 

T is the square of the De bye length of species u 
2 

4rt Na qa 

s is energy-dissipation rate per unit of mass of fluid 

v is kinematic viscosity 

11 = (v3/s)114 is Kolmogorov's microscale 

X..y is the rate of dissipation of mixing-ratio covariance or, for u = y, of mixing-ratio 

variance 

za is the photochemical production rate of species (1. 

La is the photochemical loss rate of species u 

The task at hand is to express (1) and (2) in terms of quantities that are conserved 

following the fluid motion when production, loss, diffusion, and external forces are all ignored. 

The quantity chosen is the mixing ratio Qa; 

The particle pressure is given by (Hill, 1979) 

where we used the ideal gas law, 

(3) 

(4) 

P =NT, (5) 
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for the neutral air. Performing the gradient of (4), we have 

For high Reynolds number turbulence, the flow's acceleration ~ is dominated by the pressure 

gradient Y,P. That is, the acceleration by the viscous force is negligible (Hill and Thoroddsen, 

1997). Moreover, Y,P has a hydrostatic mean value balancing gravity. Thus, 

(6) 

(7) 

The second term on the left-hand side (lhs) of (1) is negligible (in comparison with the first term) 

because velocity gradients are much smaller than the collision frequency, v a· Neglecting that 

second term and substituting (6) and (7) in (1) gives 

The terms in this equation represent the effects of collisional drag on the left side and buoyancy, 

electric field, and diffusion on the right side. 

The buoyancy term is clearly expressed in (8). Introducing the mixing ratio Qa resulted in 

this clarity because part of the buoyancy term was previously hidden in the term - Y.Pa in (1). In 

the following, we neglect.the buoyancy term. 

The concentration of neutral molecules obeys 

aN 
- + V · (NV) = 0 . at - -

Combining (2) and (9), we have 

aQa 1 ( ) -+V·VQ =-- V·f+Z-L. at - - a N - -a a a 

No approximation is used to obtain (10) from (2) and (9); in particular, incompressibility was 

not used. 
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3. PLASMA ADVECTION WITH DIFFUSION 

The production, Za, and loss, La, are neglected from (10), and the buoyancy term is 

neglected from (8). Our equations are 

and 

DQa 

Dt 

aQa 
--+V·'VQ~ at - - a 

1 --V'·f N ...... ...... a' 

where D/Dt signifies the time derivative following the neutral gas. These equations are 

nonlinear because § satisfies Poisson's equation, 

V' · E ~ 4n I: q" No . 
- - p " " 

Eliminating §leads to complicated nonlinear terms on the right-hand side (rhs) of (12). 

Numerical solution is needed for these nonlinear equations. 

(11) 

(12) 

(13) 

Equations (11)-(13) describe many phenomena having wide ranges of time and space 

scales. Solutions of these equations given by Hill and Bow hill (1977a) include collisional 

damping of species velocities, free electron diffusion, collisionally damped space charge waves, 

free ion diffusion, and ambipolar diffusion. The temporal frequencies for these phenomena in 

the D region as given by Hill and Bow hill (1977a) range from 108 to 10'3 s·'. Here, we are 

interested only in the lowest-frequency phenomena, which are diffusion phenomena. The 

diffusion phenomena are ambipolar diffusion and nearly free ion diffusion. The number of such 

diffusion modes equals the number of ion species. 

Dividing (11) by mava and performing the divergence gives 

This is the divergence needed in (12). Multiplying (12) and (14) by qa' summing over u, and 

defining, for simplicity, 
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(15a) 

and 

(15b) 

we have from (14), 

(16) 

and from (12), 

DQ = - _.!_ v . J , 
Dt N- -

(17) 

where Q is the charge mixing ratio and J is the current density relative to the flow of the neutral 

gas. Multiplying (11) by lla and summing, we can obtain the current density relative to the 

neutral gas, 

l=CE-'¥. - - - (18) 

Of course, the divergence of (18) is (16). In (18), C has the appearance of a conductivity; that is, 

current flowing in response to the electric field, as in £ = C§. However, in plasma diffusion the 

electric field retards the diffusion of some species and enhances the motion of other species such 

that little charge develops and little current flows. That is, £ is negligible compared with the 

terms on the rhs of (18), in which case £ = 0 substituted in (18) gives the approximation to the 

electric field 

(19) 

where 

is a weighted harmonic mean of De bye lengths squared. Now (19) is valid even in a plasma 

devoid of electrons. If the electron density and its gradient are not too small, then the electron's 
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term dominates the sums in '¥ and C because the electron's mobility is greater than any ion's 

mobility by many orders of magnitude. Then 

'¥~-e.2)'VQ 
- e ..... e ' 

C ~ -eN " e ,....e ' 

and (19) becomes 

E~ .2), V Q ~ ___.!:__ V Q ~ 4n N( -e)l} V Q , 
N - e -eN - e e _ e 

e lle e 

which is essentially equation (24) by Hill (1978a). The divergence (14) can be expressed in 

terms of gradients by using (19) to eliminate the electric field; then (12) becomes 

(20a) 

(20b) 

(21) 

(22) 

which constitutes a set of coupled nonlinear equations. The coupling is through the summations 

of (15a,b) defining '.!' and C. 

A simpler set of equations results when there are a sufficient number of electrons such 

that (21) is accurate. Now (21) is essentially (11) for the electrons with the lhs neglected. For 

the low-frequency diffusion phenomena, Hill and Bowhill (1977a) showed that only the electric 

field and diffusion terms in (11) are important for the electrons; the collisional drag on the 

electrons may be neglected. That is, because the electrons are by far the most mobile species (by 

orders of magnitude), the electrons enforce charge neutrality to the extent permitted by their 

diffusion. However, according to (11), the -approximation (21) is equivalent to [. ~ 0, which 

means that Q, cannot be determined from (12). Instead, Q, will be obtained from Poisson's 

equation (13). The physics and method of non-neutral multiconstituent diffusion obtained by 

Hill (1978a) is essentially the same as described above, although we have generalized the theory 

because (19) and (22) apply even if the plasma is devoid of electrons. 
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4. PERTURBATION ANALYSIS 

To render the equations tractable, a perturbation analysis is used, by means of which the 

nonlinear equations are approximated by linear equations. We introduce ambient and 

perturbation fluxes relative to the neutral gas, 

r = [
0 

+ r' ..... a ..... a ..... a 

Superscript o indicates an ambient quantity, and prime indicates a perturbation quantity. 

Transport coefficients (e.g., v
0

, D
0

, ..2>
0

) depend on the hydrodynamic variables (Y, P, N), 

fluctuations of which cause, through (11) and (12), fluctuations in fa and N
0

• Therefore, 

linearization must include the hydrodynamic variables by use of 

Y = yo+ Y' 

N =No+ N' 

(23) 

In doing so, we ignore pressure fluctuations, P'. At the large wavenumbers (k) of interest (i.e., 

wavenumbers in the inertial-convective range and higher), the pressure spectrum falls much 

faster than that of conserved scalars (e.g., as k"713 versus k"513 for an inertial range). Thus, P' can 

be safely ignored. 

The Appendix shows that v. is proportional to the product of Panda function of Y. 

From its definition, ..2>. is thus a function of Y and is independent of P. Therefore, 

"' _ "' o "' , _ "' o d..2> a -LJ -,..V +oV -....U + --
a a a a dY 

Y' , 

where ..2>; is the value at yo, and the right-most expression follows from the Taylor series 

expansion. We define a dimensionless coefficient as 

in terms of which (24) becomes 
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..2)o dYo 
a 

(24) 
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2J ~ 2J 0 (1- e I:_) . 
a a va To (26) 

We divide (11) by m
0
v

0 
and substitute (21) for§ to obtain 

(27) 

Substituting the ambient and fluctuating quantities in the first term of (27), we have to first order, 

p 
Nalla 

-eN e 

VQ - -s :;o ( Q·) vQ 
,_ e a a Qe ..... e 

From left to right, the terms in the brackets, { ... }, are the ambient value associated with [:, and 

the remaining terms are the fluctuations associated with [~ and are of obvious origin, with the 

term proportional to eva arising from fluctuations of 2J •. The term y Q; IS: Q; is of the order of 

Q; I Q; times the ratio of the large scale on which ambient quantities vary to the small scale on 

which diffusion is effective. In addition, eva approaches zero as ion size increases. Therefore, 

the first fluctuation term, S: Q; IS: Q;, is much greater than the other terms. 

We now turn to the diffusion term in (27). To first order, it is 

The ambient and perturbation electric fields are 

E"~ 
p 

-eN" e 

'V'Q" 
- e 
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E' = 
p 

V'Q' -
- e 

N' 
e Eo . 

No 
e 

(31) 
-eN° e 

Applying ambient and fluctuating quantities in (12) and subtracting the ambient equation, 

we have to first order, 

DQ~ 

Dt 
= --

1 {v· r' + £... \7· ro}, 
No - -a yo - -a 

where, from (23), (27), and (30), we have 

ro = No o Eo_ :z;o\7 Qo 
..... a a !la ..... a ..... a 

r o "'o ~o 
,.,n = -~a .;;.a ' 

where we have defined, for notational simplicity, 

";::4'0 = 
';::'a-

(32) 

(33a) 

(33b) 

(34) 

We substituted (30) into (33a) to obtain (33b). The perturbation flux relative to the air flow is 

obtained from (28) minus (29), which gives 

f' = -s :z;o 
...... a a a 

Q~ \i'Q' _ :z;o \i'Q' _ S :z;o (V'Qo) ( Qa)' :z;o ~o T' 
0 ...... e a ...... a a a .... e Q + a .;a eva ----; 
~ e T 

(35) 

The divergence of (33b) is 

\7. ro = - .2J 0 \7. go - go . \7 .2J 0 • 
..... .... a a .... .... ..... .... a (36) 

From (34) we obtain 
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For use in (36), we have from (25) that 

We also define 

To simplify notation, we define 

D

0 

[ 

0 I o a o 2 o VT n = - (1 - c ) v . 3 + (2 c - c - c' ) 3 . ---
a yo va .... .... a va va va .... a To 

Do 
a ';:i'o 

'::"a • 
To 

Clearly, Q~ and XZ are to be calculated from ambient conditions. Note that eva and <.are 

functions of T 0 and are not functions of P. 

(37) 

(38) 

(39) 

(40) 

When the divergence of (35) is performed, there are gradient terms proportional to y Q;, 

YQ~, andY (Qa!Q,)'. Those terms vanish at a subsequent step where we average over an 

isotropic ensemble; this will be made evident by retaining the term proportional to YT'. 

Moreover, relative to terms proportional to V2 Q; and V2 Q~, these gradient terms are of the 

order of the ratio of the small scale on which diffusion is effective to the large scale on which the 

ambient quantities vary. Consequently, we neglect these gradient terms. Also, a term 

proportional to {Q
0
/Q,)' arises from the divergence of (35). This term is of the order of the 

square of the aforementioned scale ratio relative to terms proportional to V2 Q; and V2 Q~. 

Consequently, we neglect the term proportional to (Q_tQ,)'. With the aforementioned 

approximations, we substitute the divergence of (35) and (36) into (32) to obtain 

DQ' QZ 
a= SaD~ vzQ;+D~VzQ~-~·YT'+T'Q~ 

Dt Q: (41) 
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The next step is to use Poisson's equation to obtain an expression for Q; and eliminate 

Q; from ( 41 ). The spatial Fourier transform is needed for this step. From Poisson's 

equation (13), after division by N°, we have to first order, 

On tbe rhs of (42), we have used the fact that to first order, Q~ = N~ /N° + Np (T'/T0 N°), 

such tbat 

(42) 

and that the right-most term above vanishes by charge neutrality. We neglected from the lhs of 

(42) terms containing ';! Q; and ';! N;; as is the case with (41), these terms vanish at a later stage 

when an average over an isotropic ensemble is performed. Dividing by 47te and adding Q; to 

Q'- ;....Z V2 Q' + _e ~ . VQ0 
= L s. Q~, 

both sides, (42) gives [ N' \/No l 
e e e 0 0 ..... e ~*e ., 1-' 

N, N, (43) 

where we have recognized the electron Debye length, A.,. The subscript ~ * e indicates 

summation over all tbe ions. Next, the Fourier transform is applied; in so doing, only fluctuating 

quantities are transformed, and quantities that depend only on ambient values are treated as 

constants. A quantity in French braces { } indicates the Fourier transform of the quantity. The 

Fourier transform of ( 43) gives 

{N'} VN° 
-' ~ ''IQ

0 
= L S {Q'}, 

o o - e p-. ~ ~ 
N, N, 

(44) 

where k is the wave vector and k is the wavenumber. The last term on tbe lhs is seen to be of tbe 

order of the square of\ divided by tbe scale height of N: (i.e., roughly, tbe square of 10'5 ) and 

is therefore neglected. Thus, we have 

l1. s~ { Q~} 
1 + cuy 
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These equations express approximate charge neutrality, and (45) is essentially the same as 

equation (23) by Hill (1978a). The free diffusion of the electrons causes the charge neutrality to 

be only approximate. By free diffusion of electrons, we mean that their tendency to diffuse is 

counteracted only by the electric field and that the electron's collisional drag is unimportant. The 

denominator 1 + (k/...)2 in (45) is the Debye shielding factor. The Fourier transform of (41) 

gives, after substitution of (45), 

a{Q~} + {v· VQ'} = at - - a 

~z:. s~ { Q~} 
s. -----

1 +CHY 

+ {T'} ik · y: + {T'} n~ . (46) 

Of course, (46) applies only for the ions, i.e., a* e. This constitutes coupled linear equations 

for the ions' mixing-ratio Fourier transforms. The electron's mixing-ratio transforms are 

subsequently obtained from those of the ions by use of (45). Without the terms proportional 

to {T'}, (46) is essentially equation (25) by Hill (1978a). 

5. EQUATIONS FOR SPECTRA AND COSPECTRA 

The next step is to use (46) to obtain equations for cospectra and autospectra (i.e., power 

spectra) of the mixing ratios. To do so, it is useful to choose the special coordinate system that is 

moving with the ambient velocity yo. There are two reasons for this. First, the turbulence 

advection model, as applied in section 6, pertains to the locally stationary case. We desire to 

apply the advection model for local volumes that are either radar-resolution volumes or a fraction 

thereof. lf the turbulent medium is rapidly advected by velocity yo through the local volume 

under consideration, then local stationarity is inaccurate because regions of strong dissipation can 

be advected into or out of the local volume. Dissipation is highly intermittent at small scales in 

turbulent flow and becomes more intermittent as the Reynolds number increases. Thus, the· 

smaller the local volume under consideration, the more rapidly the volume-averaged dissipation 

can change if dissipation structures are swept through the volume by an ambient flow velocity 

yo. Dissipation structures tend to move with the local flow, so the choice of the local coordinate 

system moving with the local flow velocity yo mitigates the effect of advecting dissipation 

structures. Therefore, we henceforth define the ambient velocity yo and all of the other ambient 

quantities (e.g., T 0
, N:, etc.) to be averages over the local volume of interest. Of course, these 
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ambient quantities change with time as the flow evolves. The second reason for the choice of 

coordinate system is that when we formulate the nonstationary case in section 6.3, we make an 

approximation [neglecting the time derivative of the scaled spectrum in (91)] that can be 

inaccurate unless the time derivative is taken for spatial coordinates fixed in the coordinate 

system moving with ambient velocity yo. That is, the advection of dissipation structures into 

or out of the local volume of interest can cause inaccuracy of the approximation in section 6.3. 

Therefore, all time derivatives in the equations for spectra and cospectra (as distinguished from 

the continuity equations) in the remainder ofthis report are with respect to the special coordinate 

system that moves with the local-volume-averaged ambient velocity. 

The cospectrum is defined by 

where Re denotes the real part and the superscript asterisk denotes the complex conjugate .. If 

a.= y, then this definition gives the autospectrum: 

(47) 

(48) 

In (47) and (48), the argument f!. is a mnemonic for arguments f!.a and f!.
1

, which are the 

independent wave vectors for the Fourier transforms in (47). Namely, Fourier transforms {Q~} 

and {Q~}· in (47) have f!.a as their argument, and {Q;} and {Q;l' have J!.
1 

as their argument. 

When we let a.= y in (47) in order to obtain (48), one of the Fourier transforms [say, { Q~}' 

in (48)] retains f!.
1 

as its argument, while the other Fourier transform [say, {Q;} in (48)] has f!.. as 

its argument. Thus, we must take the real part in ( 48) because the two Fourier transforms have 

different arguments. The mnemonic that ~ means dependence on two independent wave vectors 

applies to all subsequent equations where ~ is the argument of a function symbolized by 11> or by 

3. 

The cospectrum of potential temperature and mixing ratio is 

and the autospectrum of potential temperature is 

I!> aT(~) = Re [ { T'} • { Q~} l , (49) 

To form equations for power spectra and cospectra, we multiply (46) by { Q;l' and add 

ll>TT(~) = Re [{T'}' {T'}]. (50) 
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the equation obtained by multiplying { Q~} by the equation for { Q;}'; this latter equation for 

{ Q;l' is obtained from ( 46) by replacing a with y and obtaining the complex conjugate of the 

equation. To the resultant equation we add the complex conjugate of the resultant equation and 

divide by 2. The procedure gives 

where we define the coefficient as 

- k
2 ~Z:e [ c.~(k) <DY~(~) + cy~(k) <D.~(~)] 

+ [ <D.rC~) + <D,rC~)] (i~. X.+ n.) , 

1 

1 + cny 

(51) 

(52) 

and :Jay is the sum of all terms containing the fluctuations of the velocity of the neutral gas, 

f' = f- yo; :lay is known as a transfer spectrum. For simplicity, the superscript o has been 

deleted from the coefficients involving only ambient quantities. Next, we average over an 

isotropic ensemble of realizations (this average is denoted by angle brackets). Averaging over an 

isotropic ensemble (which is necessarily a homogeneous ensemble) requires the condition 

ff.a = - lf_
1 

and also requires dependence on only the magnitude of the argument, namely, 

k = J ff_.J = J- ff..J. Also, we integrate over spherical shells in wave vector space, which introduces 

a factor of 41t k2
• The averaged and sphere-integrated spectrum depends only on k and is given 

by 

r ayCk) = 41t e (<D./~)) 

'T.yCk) = 41t k2 (::;.,(~) > ' 

(53a) 

(53 b) 

with analogous relationships for r.r(k) and rrrCk). In terms ofthe mixing-ratio covariance, 

r.yCk) is given by 
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where d Qk is the differential solid angle in Js -space. Thus, the cospectrum is normalized such 

that 

That is, r.yCk) is the wavenumber budget of the single-point covariance, and for a= y, r 
00

(k) is 

the wavenumber budget of mean-squared mixing-ratio fluctuations of species a. 

Applying the averaging operation to (51), we obtain 

ar (k) 
~t - 'T,yCk) = - k2 (D.+ D1) r.yCk) 

- k
2 ~z:. [ c.~(k) rr~(k) + cr~(k) r.~(k) l 

+ Qa [faT(k) + f 1T(k) ]. (54) 

The term containing Js • fa vanishes on averaging over an isotropic ensemble because fa has a 

fixed direction, whereas Js takes on all directions. 

6. APPLICATION OF THE TURBULENCE ADVECTION MODEL 

6.1 Locally Stationary Case With No Coupling to Temperature Fluctuations 

For simplicity and clarity, we begin with the locally stationary case, such that the time 

derivative is neglected, and also neglect the coupling to T' by setting n. = 0. We return to 

those cases in subsequent sections. 

We use a spectral transfer function from the model by Hill and Bowhill (1976) that was 

refined and compared with data by Hill (1978b). That comparison with data shows that this 

model accurately gives the wavenumber position and breadth of the transition between inertial

convective and viscous-convective ranges. Such a model was first demonstrated to be capable of 
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computing cospectra by Hill (1978c ). The model was first used to calculate coupled equations by 

Hill (1981), where the coupling was caused by photochemistry and ambipolar diffusion. It is the 

ability of the spectral transfer model to produce spectra and cospectra for the case of coupled 

equations that is its essential advantage over a formula for a given spectrum that fits data for that 

one spectrum. 

The spectral transfer model by Hill and Bowhill (1976) with its parameters [ (k'rl) and a] 

determined by Hill (1978b) is used; it is 

-'I (k) ay dk 
(55) 

s(k) - ~-1 El/3 kS/3 [(kfk')Za + 1]-l/(3a) ' (56) 

where ~is the Obukhov-Corrsin constant, and 

k'TI = 0.074 and a = 1.4 . (57) 

Equation (54) is recast in terms of the dimensionless spectra and cospectra as defined by 

and the dimensionless wavenumber as defined by 

X = kTI . 

The 'Xar are the cospectral dissipation rates. We define F(x) such that, from (56), 

s(x) 
= ~-1 8 113 11-s/3 

F(x) 
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and 

F(x) _ X-513 [Cx/(k'Tj)2a + l]+l/(3a). (61) 

In an inertial-convective range, wherein k << k', 

(62) 

so 

(63) 

is the boundary condition at small x. In terms of GayCx), (54) becomes [one must divide (54) by 

11Xar, neglect the time-dependent term, and set na = 0] 

(64) 

where we have organized a coefficient that can be precomputed from ambient quantities, namely, 

and one of many Schmidt numbers, 

Given values for cay~' Pay' and !.)11 and using the initial condition (63), (64) constitutes 

coupled, linear, first-order differential equations that can be integrated toward and through 
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dissipation wavenumbers by means of a predictor-corrector algorithm. Recall that 

G.yCx) = G
10

(x); therefore, the number of independent G
0
yCx) and the number of independent 

equations is n (n + 1)/2, where n is the number of ion species. 

6.2 Locally Stationary Case With Coupling to Temperature Fluctuations 

Next, we turn to the locally stationary case with nonzero n.. Recall that r.r(k) is a 

cospectrum of potential temperature and ion-concentration mixing ratio. As with G
0
/k), 

we define 

(67) 

where '4.r is the dissipation rate of the covariance of potential temperature and ion-concentration 

mixing ratio. Following from (54), an additional term must be added to the rhs of (64). The 

additional term is 

(68) 

where the coefficients are 

(69) 

which can be computed prior to integrating the coupled equations. The units of n. are 

(seconds·') (kelvin·'), and (s/v)112 is a rate of strain of the small-scale turbulent motions having 

units of (seconds·'). Hence, the coefficient Barr represents a competition between the generation 

of mixing-ratio fluctuations by temperature fluctuations as parameterized by n. '4.r and the 

direct production of mixing-ratio fluctuations parameterized by (s/v)112 '4.r. 

However, with (68) added to the rhs of (64), we must have additional equations to 

determine the Gar(k); this requires one such equation for each species of ion. We turn to the 

conservation equation for potential temperature 9: 

a9 
- + V · Y'9 = D V'2 9 at - - r • 
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where DT is the thermal diffusivity; the approximation for the diffusion term on the rhs of (70) is 

discussed by Hill (1978c). 

The potential temperature has an ambient value eo and a fluctuation 8'. As previously 

noted, at the small scales of interest we do not distinguish between 8' and T'. From (70), we 

have for the fluctuations, 

(71) 

the spatial Fourier transform of which is 

a{T'} + {V·'VT'} = -k2 D {T'}. at - - r (72) 

By multiplying (72) .by { T'} • and adding the complex conjugate of the resultant equation, we 

obtain an equation for the power spectrum <I>TT(~). After further implementing the average as in 

(53a,b) and using the spectral transfer model as in (55), we obtain 

(73) 

Recall from section 5 that the time derivative in (73) is the time rate of change as observed from 

the coordinate system moving with the ambient velocity V 0
• Introducing the dimensionless 

spectrum, 

(74) 

and treating the locally stationary case (such that the time-derivative term is neglected), we have 

from (73), 

(75) 
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where 

(76) 

The Prandtl number for air, v/DT, has the value 0.72. 

To obtain an equation for <I> aT(~), we obtain the complex conjugate of (72), multiply it 

by { Q~}, multiply (46) by { T'} •, add these two equations, add to the resultant equation its 

complex conjugate, and divide by 2. We then have 

After averaging over the isotropic ensemble as in (53a,b), we have 

Recall that c
0
p(k) is defined in (52). We introduce the spectral transfer model as in (55) and 

define the dimensionless cospectra as 

Then, for the locally stationary case, (78) becomes 
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Na S S Xpy 
N a ~ Y 

e "<XT 

(82) 

(83) 

Consequently, when na is not neglected, we must solve [n (n + 1)/2] + n + 1 coupled, linear, 

first-order differential equations where n is the number of species of ions. That is, with the term 

(68) added to the rhs of (64), we have n (n + 1)/2 equations that are coupled through the GaT(x) 

[which appear in (68)] to then equations (80), which, in tum, are coupled through the last term in 

(80) to the one equation (75) for Gyy(x). 

6.3 The Nonstationary Case 

We now tum to the complication caused by nonstationarity at a fixed spatial location; 

that is, we consider the time-derivative term in (54), (73), and (78). Limitations of our theory for 

the nonstationary case are discussed in section 9. We have neglected from the lhs of (64) the 

term 

(84) 

and we neglected analogous terms from (75) and (80). Differentiating (58) with respect to time, 

we have 

s(k) ara/k) 

x.,
1 

ar 
oln [s(k)] 

+ GayCx) ot - GayCx) 

The time derivative was with respect to spatial position held fixed in the coordinate system 

moving with the ambient velocity yo and, hence, is now with respect to k held fixed. Then, 

(85) 

x = kT] varies with time because changes in e cause 11 to vary. Since k'T] is a constant, we have, 

from differentiating the definition of s(k), 
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aJn[s(k)] = _!_ alnc {l + _!_ [l+(x/k'TJ)-2aJ-l} = ~-l(c/v)li2Eh(x), (86) 
at 3 at 2 

wherein h (x) is introduced for notational convenience. For simplicity, we define the following 

dimensionless quantities, 

and 

E= 

X = rrt 

(87) 

(88) 

The time derivatives in (87) and (88) are with respect to the coordinate system moving with the 

ambient velocity yo as discussed at the beginning of Section 5. Dividing (85) by T] s(k), we 

obtain the term (84), 

[ 
~ aG (x) · l 

= "1 - E h(x) G
0 

(x) + G~(x) X , F(x) . 
(c/v)112 at y -· a, 

Recall that k is held fixed for the partial derivatives with respect to time. The time derivative 

with k held fixed is related to the time derivative with x held fixed by 

x (c/v)112 

(89) 

4 ~ 
Ej_ 

ax. (90) 

where we used, fork held fixed, ax tat = X a In T] I at. Substituting (90) in (89) gives 

1 

TJX., 

E 
-X 
4 
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aG.,(x) 

ax 
+ [-Eh(x) +Xay] G.yCx)} F(x). 

(91) 



Now consider the time-derivative term on the rhs of (91). G
0
yCx) does not change with 

time at fixed x within any convective range. At least one spectrum or cospectrum must be in a 

diffusive range for Ga:r(x) to change with time at fixed x. In a diffusive range, Ga:r(x) can change 

because of temporal changes in the dissipation ratios Xyp tx.
1 

that appear in cayp. Changes in 

'Ae IT] cause temporal changes in Ga:r(x) only at extremely large x. If we consider the coupling to 

temperature fluctuations by the expression (68), then G.yCx) can change because of changes in 

the dissipation ratios in (69), (82), and (83) as well as changes in E and Xa:r. We assume that al1 

the rates of change of these quantities are small compared with the turbulence strain rate (&/v)112• 

The time-derivative term in (91) is neglected because (&/v)112 appears in the denominator of the 

remaining time-derivative term in (91). The resulting approximate equation for the temporal 

slow-varying case is 

= 
{ rhs - [- E h(x) + x.J F(x) G

0
yCx)} 

[1 - ! x F(x)] 
(92) 

where "rhs" is the right-hand side of (64), with or without (68) included. We now note that the 

alteration needed for the nonstationarity case is the same for (75) and (80) as in (92). One need 

only define the analogous quantities XTT and XaT' replace G.yCx) with GTT(x) or GaT(x), and 

let rhs be the right-hand side of (75) or (80), respectively. 

After this work was completed, Chasnov (1998) published an equation for the 

nonstationary case that is similar to (92). He considered the case of the viscous-convective and 

viscous-diffusive ranges of a single passive scalar whose diffusion coefficient is D. He did not 

consider the inertial-convective range and the transition to the viscous ranges as we do here. 

Hence, to obtain Chasnov's result from (92) we must make the viscous-range approximations: 

F(x) ~ x-1 (k'l]r213 

s(x) ~ q-l(g/v)lt2k 

1 
h (x) 

2 
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where q is Batchelor's constant, which is denoted as o.-1 by Chasnov (1998). Now q is related to 

our other parameters by Hill (1978b): 

Chasnov (1998) used different scaled spectra E6(k) and wavenumber k, which are related to 

our notation as follows: 

for k » k' 

x = (v/D)112 k . 

We eliminate subscripts on G(x) and other quantities because we are presently considering a 

single scalar. Chasnov (1998) defined the parameters "-andy that are related to our (87) and (88) 

by 

E=-4~;t 

X= ~y. 

Our (90) is the same as Chasnov's equation (4). He neglected the equivalent ofthe time

derivative term on the right-hand side of (91), just as we do. To obtain Chasnov's result, we 

must neglect from (64) the coupling caused by the electric field. Then (66) becomes P = 2 ~ Dlv; 

thus rhs in (92) becomes, for Chasnov' s case, 

rhs = - 2 ~x2 (D/v) F(x) G(x) . 

Substitution of the above into (92) produces Chasnov's (1998) equation (17), which provides a 

check of (92). 

7. THE POWER SPECTRUM OF ELECTRON-CONCENTRATION FLUCTUATIONS 

The electrons scatter radio waves. Hence, the electron power .spectrum is of primary 

interest. Multiplying (45) by its complex conjugate, we obtain 
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.z:. yZ:e s.sy ci>.yC~) 

[1 + (k'-._) 2
]

2 

Applying the averaging in (53a) to (93) gives 

r;,,(k) = 
.z:. yZ:e s. sy r.yCk) 

[1 + CHY1 2 

In terms of the dimensionless spectra and cospectra defined in (58), (94) becomes 

£, rZ:e s. Sy 'Xar Ga/;t) 

[1 + (xA.JrJ)2
]

2 

(93) 

(94) 

(95) 

where x,, is the dissipation rate of the electron-concentration mixing ratio. For x << 1, in which 

case xA./11 << 1 is an excellent approximation, (95) becomes 

x=E'LSS..,, 
ee a""e "f"'e a Y ""«Y 

(96) 

which can also be obtained from (94) by substitution of the inertial-convective range formulas. 

The cospectrum of potential temperature and electron-concentration mixing ratio can be 

obtained from (45). By multiplying (45) by {T')', adding the complex conjugate of the resultant 

equation, and applying the average (53a), we have 

(97) 

Similar to (96), the cospectral dissipation rate obtained from (97) is 
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'X.T = L Sa 'Xa.T . 
"" 

(98) 

Also, from (97) we have 

(99) 

In the foregoing, r,,(k) and r,T(k) are spectra and cospectra of the electron mixing-ratio 

fluctuations, Q;. For application to radio-wave scattering, one needs the power spectrum of 

N;, i.e., of electron-concentration fluctuations. Of course, Q; has contributions from both N; 
and N', as shown in (101). 

According to our definitions, N, = N: + N; and N = N° + N', such that, to first order, 

N = NQ = N°Q 0 
+ N°Q' + Q0 N' . e e e e e 

Using the ideal gas law and negligible pressure fluctuations, we have N'T 0 = -N°T'. 

Consequently, at zero order (100) gives N: = N°Q;, and at first order (100) gives 

N' ~ N°Q' -e e 

No 
e T'. 

yo 

(100) 

(101) 

After Fourier transformation of (101), multiplication by its complex conjugate, and implementing 

the average as in (53a), the power spectrum of electron-concentration fluctuations, f(k), is 

(102) 
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The units of r(k) are length times the square of electrons per unit volume. The connection 

between r(k) and the Bragg-scattering cross section is given in section 12. 

8. BOUNDARY CONDITIONS 

The boundary condition (63) represents a balance between the production rate of 

fluctuations at large scales which determines the level of the inertial-convective range and the 

diffusive dissipation rate of fluctuations. For the cases of coupling to temperature fluctuations 

(section 6.2), nonstationarity (section 6.3), or both cases together (section 6.3), the balance 

between the production rate and the diffusive dissipation rate is upset. In such cases, to maintain 

the meaning of XrT' 'X.ur' and 'X.ur as diffusive dissipation, the boundary condition at small x must 

be derived. The derivation is necessarily approximate in that it requires separation in the 

wavenumber space between the production and the dissipation. 

8.1 Boundary Conditions for the Stationary Case With Coupling to Temperature 

Fluctuations 

The coupling to temperature fluctuations requires a boundary condition that differs from 

(63). Equation (75) for Gyy(x) is not coupled to other equations. Thus, the boundary condition 

for numerical integration of (75) remains (63), namely, Gyy(x) = 1.0, where xi is the initial 

value of x for integration of the equations toward large x. 

In the inertial-convective range (i.e., x « k'T] and, hence, x << 1), the diffusion terms in 

(80) can be neglected, F(x) ~ x-513 , and Gyy(x) ~ 1.0; therefore, (80) is approximated by 

= B x-St3 
aT • (103) 

The integral of this approximate equation from X; to some xh at the high-wavenumber terminus 

of the inertial-convective range is 

(104) 

For xh >> xi, we have 
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(105) 

from which we see that the effect of the coupling decays as xh increases. Thus, for xh that are 

large enough, we can take GaT(xh) ~ 1, in which case (105) becomes 

= 1 - i B x~ 213 

2 aT I 

This is our approximation for the initial condition. Note that if the coupling is removed by 

requiring BaT = 0, then this initial condition (106) reverts to (63), as it should. 

(106) 

Now we must obtain the initial condition for GayCx). With the term (68) added to (64), 

we neglect the diffusion term for x << k'1] and approximate F(x) ~ x-513 to obtain 

Solution of (103) for x in the inertial-convective range is essentially (104) with xh 

replaced by x such that 

= 1 - i B -213 
2 aT X 

(107) 

(108a) 

(108b) 

where (108b) follows from (108a) by substituting (106). We now follow the same reasoning that 

led to (106). We substitute (108b) into (107), integrate from X; to xh, neglect terms on the basis 

that xh »xi, and approximate GayCxh) = 1; we thereby obtain 

(109) 
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This is our approximation to the initial condition for Ga:r(x). If the coupling is removed, i.e., 

Barr = 0 for all a andy, then (109) becomes (63), as it should. 

8.2 Boundary Conditions for the Nonstationary Case With No Coupling to Temperature 

Fluctuations 

The nonstationary case poses a problem in the choice of a boundary condition at small x 

for the subsequent solution of the equations toward large x. The boundary condition (63) for the 

stationary case follows from (64) because at sufficiently small x the rhs of (64) is negligible such 

that (64) is approximately dGa:r(x)/ d:x = 0. Now we must use (92) to find a consistent formula 

for the boundary condition for the rtonstationary case. 

First, let x be within the inertial-convective range such thai x « 1 and x « k'rJ. Then the 

effects of diffusion, denoted by rhs in (92), are negligible, and h(x) and F(x) can be 

approximated by their formulas for x << k'l]. Equation (92) then becomes 

where we have defined 

and 

2day 

3x
8 

(xlx)-513 
---=-- Ga/X), 
1 ± (xlx

8
r213 

d~ - - ~ ( - E + X ) 
-· 2 3 ay 

-213 
x,. 

(110) 

(111) 

(112) 

The upper and lower signs in the denominator of (110) correspond to cases E ~ 0 and E > 0, 

respectively. For the case E > 0, the denominator in (110) has a zero on the positive x axis at 

x = xs; hence, the differential equations (92) and (110) have a singularity on the positive x axis. 

Thus, if E > 0, integration of (92) toward large positive x must begin at a value of x that is 

substantially greater than xs. In addition, the boundary condition must apply for x in the inertial-
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convective range, which limits how large xs can be if E > 0 and, hence, how large E can be and 

yet obtain a solution of (92). 

If we define f/ = In [GayCx)] and z = In [(x/x) 213
], then (110) becomes 

df/ = ~ 
dz ez ± 1 

(113) 

This can be integrated from our initial boundary position zi (corresponding to x = x) to infinity. 

The result is 

(114) 

where our convention is that upper and lower signs correspond to cases E ,;; 0 and E > 0, 

respectively. For an infinitely extensive convective range, we have G ayCx) ~ 1 as x ~ oo, from 

which it follows that f/(oo) = 0. Therefore, we have from (114) that the boundary condition at 

x =xi is 

(115) 

For the case E,;; 0, Taylor series expansion of the logarithm in (114) for very large zi 
leads to the boundary condition forE = 0, namely, 

for E=O. 

If, in addition toE= 0, we have X<IY = 0, then (116) becomes the initial condition (63) 

corresponding to the stationary case. 

(116) 

As we will see in the next section, GTT(x) and GaT (x) also have (115) as their initial 

condition with d<rr replaced by d17 and da7 , respectively. However, there is no need to calculate 

GTT(x) and GaT (x) for the purpose of calculating GayCx) because the case in question has no 

coupling to temperature fluctuations. 
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8.3 Boundary Conditions for the Nonstationary Case With Coupling to Temperature 

Fluctuations 

As noted below (92), for the nonstationary case, (75) is replaced by 

= 
- x2 PTT F(x) GTT(x) - [-E h(x) + XTT] F(x) GTT(x) 

r 1 - ! x F(x) l (117) 

By the same method that gave (110), we obtain (110) with G.yCx) replaced by GTT(x). It follows 

from the reasoning leading to (115) that the boundary condition for Gyy (x) is 

(118) 

where drr is defined as in (111) with X.,. replaced by XTT" As with (115), (118) reduces to (63) 

forE=Oand XTT(x) =0. 

Now GaT (x) also satisfies (92) with Xa
1 

replaced by X aT' but rhs in (92) now includes 

the last term in (80). Thus, the equation analogous to (110) is 

B x-513 [1 + (xlx r213j"drr + ~ daT (xlx )-5/3 G (x) 
aT -s 3 saT 

x, (119) 
= 

wherein GTT(x) is approximated by (118) with xi replaced by x, and d.r is defined as in (111) 

with X.,. replaced by Xar Define the following as 

(120a) 

(120b) 
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b=b=+d a aT (120c) 

3 -213 
c = Ca = + Z BaT x, (120d) 

The right-most formula in (120a) can be computed even when E = 0. Then (119) becomes 

= ce"" + bGaT . (121) 

Solution of an equation like (121) is the sum of a solution of the homogeneous equation 

(i.e., with c = 0) and a-particular solution of the inhomogeneous equation. The solution of the 

homogeneous equation that satisfies (63) in the stationary limit has already been given in (115). 

It is 

(122) 

A particular solution of (121) can be found by substituting GaT"' e"" into (121); the resulting 

particular solution is 

c 
a-b 

e"" = :. B (X - X )-1 [1 + (xlx )- 213 ] "dTT 
aTTTaT- s • (123) 

As required, for vanishing coupling to temperature fluctuations, i.e., for BaT = 0, the particular 

solution (123) vanishes. Note that (123) is not a valid solution if XTT- XaT = 0. Using a = b in 

(121), we find that the particular solution for the case XTT- XaT = 0 is 

= - 1_ B x-213 exp ( 1. X x-213 ) 2 aT 2 TT 

(124) 

forE=O. 
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The solution for a * b is the sum of (123) and some coefficient times (122); consider the 

coefficient 1- [cl(a-b)] such that 

= ebu + _c_ ebu [e<a-b)u _ 1] . 
a-b 

As (a -b)~ 0, this solution becomes 

(125) 

(126) 

which is (122) plus the particular solution (124). 1f BaT = 0, then c = 0 such that (125) becomes 

(122), which has the same correct properties as (115) and (116). 1f E ~ 0, then, using (116), 

(125) becomes 

{ -1 + exp [ ~ x-
113 (XTT- x.T)]}] . (127) 

As XTT and xaT approach zero, (127) becomes 

(128) 

which is the correct stationary limit in (106). 

Therefore, (125) is the correct solution for both a * b and the limit a = b. However, for 

substitution of values, the limiting formula for a = b must be stated separately. From (125) and 

(126) the boundary conditions are 

a.r<x) = [1 ± (xJx,r213]•daT [1- X B:Tx {-1+ [1 ± (xJxy213]•(dTT-daT)}] 
TT aT 

and 
(129) 

a.r<x) = [1 ± (xJx,t 213 ]•daT { 1 + ~ BaT x; 213 
In [1 ± (xJx,t 213]} for XTT ':' xaT 

(130) 
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If E = 0 then (129) and (130) become 

for XTT * xaT and E = 0 

and 

G ( ) ( 
3 -113 ) [ 3 -113] aT x, = exp 2 x, xaT 1 - 2 BaT X for XTT = xaT and E = 0 . 

Next we tum to the boundary condition for Ga (x). For the case in hand, rhs in (92) y . 

includes the term (68). For an inertial-convective range, we substitute (125) into (68) to obtain 

the following approximation for the additional term in (68): 

where 

I = a 

TERM ~ x-513 

ca 

a-b a 

{ 
bu bu } 

!a e ' + IY e ' + J e"" 

3 -113 
+-X 

2 s 

( 
3 -113) +-X 2 s 

cy ] (- 3 -2/3) 
+ ByTa a- by + 2 Xs ' 

(131) 

(132a) 

(132b) 

and IY is obtained from !a by interchanging a andy. In (131) and (132a,b) we have included 

subscripts in the definitions (120c,d) to distinguish between the two species denoted by a andy. 

For small enough x in the inertial-convective range, the rhs in (92) approximately equals TERM 

in (131). Hence, (92) gives 
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where 

TERM + 3_ day (xlx r 5' 3 G (x) 
3 s ay 

x, 

1 ± (xlx,rzt3 

Using the substitution (120a) and using (131) for TERM, (133) becomes 

dG01 ~ 
du 

b u b u au I e • + I e ' + J e + dG a y ay 

The solution to the homogeneous equation is 

(133) 

(134) 

(135) 

(136) 

The particular solution is the sum of three terms of the same form as the lhs of (123). For 

instance, the first term of the particular solution, corresponding to the first term on the rhs of 

(134), is 
I. b e •" (137) 

b -d a 

Constructing the solution with the correct limiting properties follows from the analysis of (125). 

The solution is 

+ 
Iy [ _1 + e'b1 -d)u] 

b- d 
1 

J [-1 + e<a-d)uJ}. + 
a-d 

(138) 

Of course, if any of the three denominators vanish in (138), then the term can be replaced by 

its asymptotic formula. The three asymptotic formulas are I. u, I
1
u, and Ju. For the purpose 
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of computation, we must find explicit limiting formulas for cases when zeros appear in the 

denominators in (138). For this purpose, J in (132b) is separated into its two terms such that the 

last term in (138) is added to the first and second terms in (138) to give 

where 

B 
K 1(u) = g"T(w) + X ~TX [g (w) g (w)] ~ ~ aT - TT 

TT aT 

3 -2/3 
W-+-X U 

2 s 

= - l x-213 

2 

! 
1 - exp [- (XTT - Xay) W] 

gTT(w) = XTT- xay 

w 

(139) 

(140) 

if E = 0 , 

if xTT = xar , (141) 

and gaT(w) is obtained from (141) by replacing XTT with xaT' .In (141) the case XTT = xay 

is obtained from the case XTT * Xay by the Taylor series expansion in (XTT- Xar) w. 

For the case XTT = XaT' we must express (140) differently. The exponential in (141) is 

expressed as 
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the exponential containing (XTT - x.T) in (142) is expanded in small values of its argument; and 

gTT(w)- gaT(w) in (140) is expressed with a common denominator. We thereby obtain as 

XTT - xaT that 

(143) 

where 

(144) 

If A- 0, then (143) approaches w 2/2. Therefore, to complement (140), we have 

(145) 

where 

for A* 0 

L(w) = 

forA=O. (146) 
2 

Finally, our boundary condition for G./x) is (139) evaluated at x = x1• For evaluation of (139), 

we have the two cases (140) and (145). Note that for the stationary case [i.e., E = XTT = XaT = 

x.
1

= 0], substitution of (140), (141), (145), and (146) in (139) gives the correct stationary limit 

(109). 
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9. LIMITATIONS OF THE NONSTATIONARY CASE 

The theory of the viscous-convective range originated by Batchelor (1959) is for the 

stationary case. All subsequent theories and models, including those by Hill (1978b) that we use 

here, are for the stationary case as well. The stationary case is a case for which mechanical 

turbulence has always been active at a steady level of energy input, and scalar variance has 

always been maintained by a steady level of input. The relevance of such an unrealistic case to 

real turbulent flow is obtained from the concept of local stationarity. Local stationarity means 

that statistics of the inertial and/or viscous ranges are nearly the same in nonstationary cases as in 

stationary cases because the small scales approach statistical equilibrium much more rapidly than 

the statistics' rate of change at large scales. For the velocity field, the case of very large 

Reynolds numbers and very small spatial scales is also the locally stationary case. 

On the other hand, the viscous-convective range has the special property that it contains 

infinite scalar variance for the stationary case with an infinite Schmidt number. This is because 

the integral over all wavenumbers of a viscous-convective range's k -I power Jaw diverges 

logarithmically at its upper limit. It is the viscous-diffusive range that limits the scalar variance 

to finite values. Thus, if scalar variance is initially injected at large scales, then some time must 

pass before the viscous-convective range has its steady-state form. For a finite Schmidt number, 

the scalar variance input at large scales places an upper bound on the level of the viscous

convective range after local stationarity is established. 

The derivation of boundary conditions in section 8 employs the assumption that local 

stationarity is valid and that there are some spatial wavenumbers in the inertial-convective range 

where the k -513 power Jaw is evident. This clearly places a limit on how large the quantities E, 

Xay' x.T' and XTT can be. These quantities, defined in (87), (88), and the last sentence of 

section 6, parameterize the temporal rate of change of the dissipation rates. A check of the 

calculated spectra is needed to assure that some inertial-convective range power Jaw is observed. 

This is of increasing concern as one decreases the volume in which the dissipation rates are 

calculated. Because of the spatial intermittency of turbulence, the advection of dissipation into 

or out of the volume during a temporal increment can cause increasingly large values of E, Xay, 

XaT' and XTT as the averaging volume decreases. 

10. DEFINITION OF DISSIPATION RATES 

Let an overbar denote an average over a specific volume whose minimum dimension is at 

least the size of an inertial-range spacing. The average is calculated at a specific time, so there is 
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no average over time. Then, y and T are the volume averages of velocity and potential 

temperature. The fluctuations from these instantaneous, local averages are denoted by Y' and 

T'. The equation for the temporal rate of change of T'2 , as derived from (70), is 

-2D (\/T')· (\/T'). 
T - -

(147) 

The term on the rhs is necessarily negative and therefore always represents a loss, never a gain, 

and is therefore called the dissipation rate of T'2 . The fourth term on the lhs is the production 

rate of T' 2 from the gradient of the average potential temperature. The second term on the lhs is 

the rate of change of T'2 caused by the locally averaged velocity y carrying T'2 into or out of 

the volume. Using incompressibility, i.e., y · y = 0, the second term can be rewritten as 

(148) 

We have used the fact that the volume integral of a divergence is the surface integral of the 

component of the vector normal to the surface that bounds the volume. 1n (148), I d§ I is the 

differential of surface area, the direction of d § is normal to the surface, and <v' is the volume 

over which the volume average is performed. In (148) we see that the term in question is 

proportional to the average over the surface of the surface-normal component of y T'2• 

Likewise, the third and fifth terms in (147) can be written as 

(149) 

(150) 

Just as fT' 2
, which appears within (148), is the flux of T'2 caused by the volume-average 

velocity y, Y' T'2 , which appears within (149), is the flux of T'2 caused by the turbulence 

fluctuation of velocity ):''. Also, - DT YT'2 , which appears within (150), is the diffusive flux 

of T'2 into or out of the volume. 

If the turbulence is confined within a box and if the volume average is over the entire 

box, then the surfaces of integration for (148)-(150) can be beyond the box where V' and T' 

vanish such that the right hand sides of (148)-(150) are zero. Then (147) reduces to 

50 



BT'2 

+ 2 Y'T' . 'Y.T = -2 DT (YT'). (YT') . at 
(151) 

For this simple case, the time rate of change of T' 2 is caused by the gradient production and the 

dissipation. For homogeneous turbulence, the surface-integrated fluxes (148)-(150) become 

negligible as the volume becomes very large, and (151) becomes a good approximation. 

For isotropic turbulence, Taylor series expansion of the structure function gives 

lim < [T'(x)- T'(x + r)] 2 > 
r .... 0 ~ ,... ""' 

= .!. (VT') · (VT') r 2 
. 

3 - - (152) 

Thus, t.l-te rJ;ssipation rate, 

(153) 

determines the structure function at small enough r. That is, as given by Obukhov (1949), 

lim 
r-0 

< [T'(x)- T'(x + r)] 2> = XTT r 2 
• 

- - - 6D 
T 

(154) 

Since the spectrum r TT(k) is a high-pass transform of the structure function, it follows that 

[TT(k) is proportional to XTT fork in the dissipation range of [TT(k). Integration toward lower k 

of the spectral transfer model (73) produces [TT(k) proportional to xTT at all kwhere local 

stationarity is accurate. This agrees with the classic result, based on dimensional analysis, that 

[TT(k) is proportional to XTT in the inertial-convective range [see (62)]. Determining the 

dissipation rate from (153) is called the direct dissipation method. 

We conclude that the dissipation rate defined in (153) is the same as is required in the 

denominator of (74). At small length scales such that local stationarity is accurate, for any scalar 

satisfying the continuity equation (70), and for locally isotropic turbulence, the structure function 

and spectrum are proportional to the dissipation rate defined in (153). 

A similar analysis can be performed for the temporal rate of change of turbulent kinetic 

energy. In the analysis, one identifies advective and viscous transport of energy across the 

volume's surface. The analysis leads to an expression for the average rate of dissipation of 

turbulent kinetic energy per unit mass of fluid as given by 
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(155) 

where vis the kinematic viscosity and repeated indices are summed. This expression for sis 

equal to the volume average of the local and instantaneous rate of viscous dissipation of 

mechanical energy, per unit mass of fluid, as given by Batchelor (1970, p. 153). Batchelor's 

expression is s = 2v e .. e .. , where the stress tensor is 
lj lj 

(156) 

The dissipation rates are actually determined by large-scale production and the rate of 

change of variance, as shown by the gradient-production term and time-derivative terms on the 

lhs of (151). For energy dissipation, s, Sreenivasan (1998) has determined the minimum 

Reynolds number for which s scales with the velocity variance and the integral scale; this is the 

same as determining the Reynolds number for which there is negligible advective and viscous 

transport across the averaging volume's surface. Analogously, for scalar dissipation, the 

advection effects, as given in (148)-(150), modify the relationship between production and 

dissipation if the averaging volume is small. Even with the advection effects, the dissipation rate 

in (153) determines the level of the spectrum at·high wavenumbers in the manner described 

above with respect to (154). This is the property of XTT that is exploited in the scaling in (74). 

The same scaling is used in (58) and (79); hence, 'Xur and 'X.uT must also determine the level of 

their respective spectra at high wavenumbers. 

The dissipation rates 'Xur and 'X.uT are needed in (65), (69), (82), and (83) for the purpose 

of calculating Ga
1
(x) and GaT (x). These dissipation rates are also needed in (58) and (79) for the 

purpose of calculating fa
1
(k) and faT(k) SO that the electron-concentration power Spectrum can 

be obtained from (94), (97), and (102). Recall that in the introduction we described advection of 

initial ionization profiles by simulation of the dynamics of breaking internal waves and Kelvin

Helmholtz instabilities. The question at hand is, "How do we determine the 'Xur and· 'X.uT from 

these simulations such that we can implement the subgrid-scale calculation using the turbulence 

advection model?" A related question is, "How many of the phenomena described by (11), (12), 

and (13) must be retained in the simulation?" 

The grid scale of the simulations is larger than the scale at which even the fastest 

diffusion mode affects the ionization. The ambipolar electric field is generated by the diffusion 
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of the ionization, and no large-scale phenomena that generate electric fields (e.g., the 

geomagnetic field) are included in the simulation. Hence, we can require that the ionization obey 

charge neutrality such that (13) gives 

E = 0 (157) 

and 

(158) 

Then the divergence of (11) substituted into (12) gives the equations for the ions as follows: 

V · VQ = _!_ V ·.2 VQ 
- ..... a N'"" a .... a 

(159) 

The simulation must smooth the advected ionization at scales approaching the grid scale in order 

to avoid numerical artifacts. Therefore, we cannot use the geophysical values of .2. in (159). 

Instead, we must use values that are nearly the same as the effective kinematic viscosity used to 

smooth the velocity fields in the simulation. This effective viscosity is greater than the 

geophysical viscosity. Thus, we need not, and from the point of view of efficient calculation we 

should not, include any spatial dependence in the diffusion coefficient. Consequently, .2. in 

(159) must be replaced with a constant that commutes with the divergence operator in (159). 

Furthermore, we will show that charge neutrality (158) requires that all the ions have the same 

diffusion coefficient. Therefore, (159) must be replaced by 

(160) 

where Ds is the diffusion coeffiCient used in the simulation. Reasonable values of the effective 

diffusion coefficient Ds to use in the simulation are between about 0.5 and 1.0 times the effective 

kinematic viscosity. Next, we verify that (160) maintains charge neutrality if charge neutrality 

exists initially. Multiply (160) by q
0 

and sum over all a.* e; divide (158) by Nand apply the 
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co-moving derivative D/Dt to it. Comparison of the two resultant equations shows that Q, also 

satisfies (157) as a consequence of charge neutrality. Next, multiply (157) by q
0 

and sum over 

all u (including u =e) to obtain 

(161) 

where Q = ~ qa Q
0 

is the mixing ratio of charge density. Now (161) shows that the charge 

mixing ratio is always zero if it is initially zero. That is, charge neutrality is maintained. Th,e 

reason that charge neutrality is maintained is that all the ions are assigned the same diffusion 

coefficient Ds. 

Now (160) is the same as (70), and the discussion regarding (147)-(154) applies to the 

ion-dissipation rates. The dissipation rate of a cross-structure function (i.e., of a cospectrum) 

must be determined. For this purpose, we can use (70) and (160) to obtain an equation analogous 

to (147) for the quantity T' Q~. The dissipation term on the rhs of this equation is 

(162) 

The discussion regarding (147)-(154) also holds for (162). If we use (160) to formulate the 

covariance of two different ions and momentarily distinguish their diffusion coefficients by Das 

and Drs, then we likewise obtain that the dissipation rate corresponding to their cross-structure 

function and cospectrum is 

(163) 

where we note that in the simulation we use Das =Drs = Ds· Thus, (153), (155), (162), and (163) 

are the dissipation rates needed for the turbulence advection modeling. 

Up to this point, it has been implied that DT in (153) is the geophysical thermal diffusion 

coefficient. Because the grid scale of the simulation is greater than the geophysical scale. on 

which heat diffuses, the simulation must smooth the potential temperature at a greater scale than 

the geophysical thermal-diffusion scale. Hence, an effective diffusion coefficient must be chosen 

for use in the simulation. A reasonable choice is to let DT = Ds, which is the same value as is 
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used to smooth the ion variations in the simulation. However, whereas Da = Ds for all a is 

necessary to maintain charge neutrality in the simulation, DT = Ds is not required. 

As long as there is significant separation of production and dissipation scales, that is, for 

a sufficiently large Reynolds number, the dissipation rates calculated from (153), (155), (162), 

and (163) by means of the simulation will be the same as the dissipation rates in a corresponding 

geophysical flow that has the same large-scale properties. The reason is that the dissipation rates 

are determined by the large-scale flow properties, and the calculation of local dissipation rates by 

means of the gradients is a useful convenience. The small geophysical diffusion coefficients 

cause large gradients to exist in the geophysical flow, whereas the large diffusion coefficients of 

the simulation cause small gradients such that the product of the diffusion coefficient and the 

mean-squared gradient is the same in simulated and geophysical flows. 

Another possible method for determining dissipation rates is called the spectral method 

(also called the inertial-dissipation method). The spectral method involves spectra and cospectra 

of scalars in their inertial-convective range and of velocity spectra in their inertial range. In the 

inertial-convective range, the ion-ion power spectra and cospectra ray (k) are related to their 

corresponding dissipation rates, as in (62), and raT(k) and rTT(k) are analogously related to their 

dissipation rates. Similarly, velocity spectra are proportional to s213 in their inertial range. 

Therefore, if spectra and cospectra are calculated for volumes the size of a radar's scattering 

volume, if inertial-convective ranges can be identified in all the scalar spectra and cospectra, and 

if an inertial range can be identified in the velocity spectra, then averaging over the identified 

inertial range can produce the dissipation rates. The quantities to be averaged are the spectra and 

cospectra multiplied by k 513
• However, there are several disadvantages to this method. One is 

that laborious examination of numerous spectra and cospectra for each scattering volume must be 

done. Second, one must have local isotropy at spatial scales substantially greater than the 

dissipation scales that determine the scalar and velocity gradients; thus, the Reynolds number of 

the simulation must be greater for the spectral method than for the direct-dissipation method. 

Third, the dissipation fields as calculated by the direct-dissipation method can be output during 

the computer execution of a simulation, whereas the spectral method requires processing of 

output files. Fourth, because of the larger volume that must be averaged for the spectral method 

as compared with the direct-dissipation method, it is unlikely that one can subdivide the radar's 

scattering volume for the purpose of calculating Doppler spectral width by means of local 

velocity weighted by local reflectivity. On the other hand, use of the direct dissipation method 

requires that the simulation can accurately produce gradients; that is, numerical artifacts of the 

finite grid size must be avoided. 
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11. CALCULATIONS OF SPECTRA AND COSPECTRA 

We have calculated the a.y(x)' a.r(x)' GTT(x), Xee a •• (x), and Xer a.r(x) for various 

multi-ion cases, both with and without coupling to temperature fluctuations and nonstationarity. 

Graphs of these spectra are presented in this section. Recall that the scaled spectra and cospectra 

(G) are constant in a convective range. The variation with wavenumber of the spectra and 

cospectra (f) is proportional to F(x) times the corresponding scaled spectra or cospectra. That 

is, F(x) from (61) contains the inertial-convective range power law x- 513
, the viscous-convective 

range power law x-I, and the gradual transition between these power laws. In Fig. I, we show 

F(x). It must be kept in mind that the G that we show must be multiplied by F(x) to obtain the 

behavior off. 
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FIGURE 1. The function F(x) showing the x- 513 and x- 1 convective-range power laws and the 

transition between them. 
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To delineate the calculated cases, a table of input values is given for each case as printed 

by the computer. To interpret the symbols of these computer printouts, the corresponding 

symbols from the text and the units of the tabulated values are given in Table 1. Tables 1-11 and 

Figures 2-11 are grouped together at the end of this section. 

If, in a printout of input, the values of dt eps, dt chi (n, n), and dt chit (n) are all zero, then 

the stationary case is calculated; otherwise, a nonstationary case is calculated. If, in a printout of 

input, the values omega(n) are all zero, then there is no coupling to temperature fluctuations; 

otherwise, there is such coupling. 

The subsequent figures are composed of three graphs labeled a, b, and c, and are referred 

to in the text as "a graphs," "b graphs," and "c graphs." The a graphs show the ion-ion mixing

ratio spectra and cospectra. The b graphs show the temperature spectrum and ion-temperature 

cospectra. The c graphs show the electron mixing-ratio spectrum and the electron-temperature 

cospectrum multiplied by their respective dissipation rates x,, and X,r- That is, the c graphs 

show the calculation of (95) and (99). The reason that the factors X,, and X,r are included on the 

ordinates of the c graphs is that X,, and X,r can be zero, in which case (95) and (99) show that 

G,,(x) and G,y(x) are undefined, whereas the products x,, G,,(x) and X,r G,y(x) are defined and 

do not vanish at all x. 

Table 2 gives the printout of input for Figs. 2a--c. There are eight ions, four that are 

negatively charged and four that are positively charged. These ions have very diverse diffusion 

coefficients, as expected from the input parameters wn (n). Figure 2a shows only the eight 

spectra because including the 20 cospectra would cause a confused graph. From left to right in 

Fig. 2a (i.e., for increasing x), one sees the effect of progressively smaller diffusion coefficients 

of the progressively more massive ions. The right-most diffusive decrease at x > 10 3 is caused 

by the diffusion of the most massive ion. 

For all of our cases, 11 = 435 em and 'A,= 2.93 em so that 'AJ!] = 6.7 x 10·3• Thus, the 

Debye shielding factor [ 1 + (x'A/1]) 2
]-

1 is 0.5 at x = 148 and the square of this factor is only 

4.7 x 104 at x = 1000. Thus, in Fig. 2a there is a transition from nearly charge-neutral diffusion 

below x = 100 to nearly free-ion diffusion at x = 1000. A consequence of this transition is that 

in Fig. 2c the electron spectrum does not extend to as great a wavenumber as does the spectrum 

in Fig. 2a of the most massive ion. In Fig. 2a, note that charge neutrality causes the spectra of all 

of the light ions to maintain some reduced level beyond the x at which they would diffuse in the 

absence of coupling by the electric field. 

In Fig. 2b the temperature spectrum is the dashed curve and the eight ion-temperature 

cospectra lie nearly upon one another, blending into one wide curve. The ion-temperature 

cospectra all decrease rapidly at x much smaller than the x at which their corresponding ion 
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spectra decrease. The reason is that the governing parameter in (80) is PaT in (81), and for 

D.<< DT' PaT approaches ~DT!v ~ PTT/2. Thus, for D.<< DT' the ion-temperature cospectra all 

decrease rapidly at x only about {i greater than the x at which the temperature spectrum 

decreases. Figure 2b and all subsequent b graphs show that if n. * 0, the effect of coupling to 

temperature fluctuations vanishes as x increases beyond unity. For the same reasons, the 

electron-temperature cospectrum decreases rapidly beyond x ~ 1, which is seen in Fig. 2c and all 

subsequent figures labeled c. 

The electron mixing-ratio spectrum in Fig. 2c does not have a range in which it is nearly 

constant; such a range would correspond to a viscous-convective range. The reason is clear from 

Fig. 2a, as follows: The electron spectrum follows from the spectrum of ionic net charge; that is, 

the electron spectrum is what it must be on the basis of approximate charge neutrality. 

Table 3 and Figs. 3a-c show the case of a light positive ion and a very massive negative 

ion. The ion-ion cospectrum is included in Fig. 3a. (Such cospectra are included on all 

subsequent a graphs.) The light ion's spectrum and the cospectrum decrease rapidly beyond 

x = 100 because the Debye shielding becomes small beyond x = 100 such that charge neutrality 

is relaxed. This is also the reason for the decrease of the electron spectrum for x beyond 100 in 

Fig. 3c. 

In Figs. 3b,c the cospectra decrease rapidly beyond x = 1 for the same reasons as given 

for Figs. 2b,c. This is true for all subsequent graphs of ion-temperature and electron-temperature 

cospectra. Therefore, this point need not be repeated. 

For Figs. 2c and 3c, the electron spectrum (and the electron-temperature spectrum, as 

well) is zero at our initial x value of 10·3• This is because the parameters in Tables 2 and 3 give, 

from (96) and (98), X,,~ 0 and XeT ~ 0. Thus, Xee G,.(x) [and also XeT G,T(x)] increases from 

zero to attain appreciable values only at large enough x such that some diffusion process requires 

the electrons to establish approximate charge neutrality. 

Table 4 and Figs. 4a-c show a case with the same input parameters as Table 3 except 

that the cospectral dissipation rate is negative such that Xee is no longer zero, as is evident from 

Fig. 4c. Figure 4a is similar to Fig. 3a except that the cospectrum in Fig. 4a crosses zero at 

x = 0.537 to become negative at x > 0.537. The resultant effect on the electron spectrum in 

Fig. 4c is the downward step. For x > 1, the curves in Figs. 3a-c and 4a-c are the same (and 

have the same interpretation) except for the opposite sign of the ion-ion cospectrum. 

If the cospectral dissipation rate X.r is negative, then r./k) is negative at the initial 

x value. Then, G
0
}x) is initially positive because, according to (58), it is the ratio of two 

negative numbers. That G./x) is initially positive corresponds to the initial value of unity in 

(63). Since the cospectrum G
0
/x) in Fig. 4a is positive for x < 0.537 and negative for x > 0.537, 
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it follows that ray(x) is negative for x < 0.537, as required by a negative X.r' and positive for 

x > 0.537. A negative value of the cospectral dissipation rate can arise from turbulent mixing in 

the presence of ambient gradients of a different sign for the two mixing ratios. 

Table 5 and Figs. Sa-c give a nonstationary case with all other parameters the same as in 

Table 4 .. At small x, one can see in Figs. Sa-c the effect of the boundary conditions for the 

nonstationary case. The boundary conditions are (115) for Gay' (118) for Gyp and (127) with 

BaT= 0 for Gar· For x > 1, the curves in Figs. Sa-c are slightly lower than in Figs. 4a--c, but the 

two sets of figures can be made congruent at x > 1 by a slight shift of the ordinates. The effect 

of nonstationarity is most important at low wavenumbers. 

Table 6 and Figs. 6a--c show the same stationary case as in Table 4 and Figs. 4a--c except 

that there is couoling to the temoerature fluctuations, i.e., .Q * 0. For x > 1, the curves in • • a 

Fig. 6a are congruent with the curves in Fig. 4a. For Figs. 4b,c and 6b,c, there is congruence for 

X> 0.1. 

Table 7 and Figs. 7 a--c combine the nonstationary case of Table 5 with the same coupling 

to temperature fluctuations as in Table 6. For x > 10·2, one can obtain congruence of the curves 

in Fig. 7 a with curves in Figs. Sa and 6a; for Figs. 5b,c, 6b,c, and 7b,c, there is congruence for 

x > 0.1 with the exception that curves in Fig. 6c are slightly higher than in Fig. 7c. Similar to the 

comparison of Figs. Sa-c with Figs. 4a--c, Figs. 7a--c become congruent with Figs. 4a--c at 

x > 0.1, given a slight shift of the ordinates. The effects of nonstationarity and of coupling to 

temperature fluctuations change the shape of the curves for x < 1. 

In the previous cases, all the X.r had unit magnitude. Table 8 and Figs. Sa-c show a 

stationary case with no coupling to temperature fluctuations for a massive negative ion having a 

dissipation rate much greater than that of a light positive ion and a yet smaller positive cospectral 

dissipation rate. The negative ion is not so massive as to cause ionic charge density at spatial 

scales as small as 'A.. Consequently, all spectra in Fig. Sa and the electron spectrum in Fig. Sc 

decrease rapidly at x such that the massive negative ion undergoes ambipolar diffusion. The 

distinctive feature of this case is the increase of the positive-ion spectrum and of the ion-ion 

cospectrum for x such that diffusion of the positive ion is effective. When the positive ions 

diffuse, their electrical attraction to the negative ions causes the positive-ion fluctuations to 

increase and the electron fluctuations to decrease, which is the opposite of the case in Figs. 3a,c. 

The relatively large dissipation rate of the negative ions corresponds to relatively large 

fluctuations of negative ions that can attract the more mobile positive ions. 

Table 9 and Figs. 9a--c show a nonstationary case with all other parameters the same as in 

TableS. The curves in Figs. 9a--c are congruent with those in Figs. Sa-c for x > 0.1. 
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Table 10 and Figs. lOa--c show a stationary case with all parameters the same as in 

Table 8 except for coupling to temperature fluctuations, i.e., n. * 0. With the exception of the 

electron-temperature and ion-temperature cospectra, the curves in Figs. lOa--c are congruent with 

those in Figs. 8a--c for x > 0.01, except for X.r G,r (x), for which congruence is obtained for 

x > 0.3. Table 9 and Figs. 9a--c show a nonstationary case with no coupling to temperature 

fluctuations, whereas Table 10 and Figs. lOa--c show a stationary case with coupling to 

temperature fluctuations; all other inputs are the same in these two cases. For x > 0.3, all curves 

in Figs. lOa--c are congruent with the curves in Figs. 9a--c. 

Our final case is shown in Table 11 and Figs. !la-c. The case is like those in Tables 8, 9, 

and 10, except that it includes both nonstationarity and coupling to temperature fluctuations. The 

case in Figs. lla-c has features in common with those previous cases, including congruence of 

the curves with corresponding curves for x > 0.1, and in some cases there is congruence for 

X< 0.1. 

Let us return to considering Figs. Sa, 6a, and 7a. The solid curves are negative in the 

ranges 0.48 < x < O.S8, O.S2 < x < O.SS, and 0.48 < x < O.S8 for these three figures, respectively. 

These ranges are in the middle of the dip of the curves in these figures. The solid curves are 

power spectra. Power spectra cannot be negative; therefore, there is an error in the ranges where 

the solid curves are negative, however brief these ranges may be. 

These three figures are the same case as presented in Fig. 4a, except Fig. Sa includes 

nonstationary input, Fig. 6a includes coupling to temperature fluctuations, and Fig. 7a includes 

both aspects (compare inputs in Tables 4-7). The approximations made in section 8 in deriving 

boundary conditions for nonstationary cases and for cases including coupling to temperature 

fluctuations introduce error that can lead to negative power spectra. The approximation of 

neglect of the time derivative in (91) can also lead to such error. The cases presented in Figs. Sa, 

6a, and 7a have initial conditions that deviate significantly from unity, i.e., from (63). This is 

especially evident in Figs. Sa and 7a, wherein the solid curve begins nearer to 103 than to unity. 

Because of this significant deviation from unity of the boundary condition and the approximation 

in (91), we obtain some error, including negative power spectra in places. 

Clearly, one cannot have very strong nonstationarity or strong coupling to temperature 

fluctuations if the result is to be accurate. Nevertheless, for x > 1 there is little difference 

between the curves for Figs. Sa, 6a, and 7a, as compared to the corresponding stationary and 

uncoupled case in Fig. 4a. Thus, the errors will have little effect on calculation of radar scatter 

for Bragg wavenumbers that exceed the inverse of Kolmogorov' s microscale. 
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TABLE 1. The correspondence between symbols in Tables 2-11 and symbols in 

the text. 

Table Symbols 

n= 

cd= 

eps= 

nair= 

temp= 

r (n)1 ~ 

s (n)1 ~ 

wn(n)§ ~ 

chi (n,n)1 ~ 

chit (n)1 ~ 

chi tt ~ 

dt eps = 

dt chi (n, n)1 ~ 

dt chit (n)§ ~ 

dt chi tt ~ 

omega (n)1 = 

Corresponding Text Symbols 

n, number of ion species 

N, ( cm-3
), electron concentration 

E ( cm2 s-3
), energy-dissipation rate 

N (cm-3
), neutral's concentration 

T (K), absolute temperature 

N IN , ion-electron concentration ratio a e . 

S
0

, charge of ion in units of e 

nw, number of H20 in hydrated-proton ion 

x,.yCs-1 
), ion-ion dissipation rate 

Xar (K s -1 
), ion-temperature dissipation rate 

Xrr (K2 s-1
), temperature-dissipation rate 

dcldt (cm2 s-4
), time derivative of E 

dx./dt (s-2
), time derivative of Xay 

dx,.Tidt (K s-2
), time derivative of Xar 

dXrrldt (K2 s-2
), time derivative of xTT 

n. (K1 s-1
), coupling to temperature fluctuations (39) 

1For a = 1 ton and p = 1 ton, we have the arrays of dimension (n) and (n, n). 
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TABLE 2. Computer inputs for the calculation shown in Figs. 2a-c. See Table 1 for the 
meaning of the symbols. 

# Each variable is preceded by a comment stating its name. 
# 
# n 
8 
# cd 
1000 
# eps 
100 
#nair 
1.654 X 1014 

#temp 
180.65 
# Arrays. Arrays are listed as x(i) or y (j,i) or z(k,j,i), with the 
# ftrst subscript varying fastest, so after y(l, 1) comes y(2, 1) 
# r (n) 
# First, 4 positive ions: 

2. 000000000000 
2.000000000000 
2.000000000000 
2.000000000000 

# Next, 4 negative ions: 
2.000000000000 
2.000000000000 
2.000000000000 
1.000000000000 

# s (n) 
# First, 4 positive ions: 

1.000000000000 
1.000000000000 
1.000000000000 
1.000000000000 

# Next, 4 negative ions: 
-1.000000000000 
-1.000000000000 
-1.000000000000 
-1.000000000000 

#wn (n) 
# First, 4 positive ions: 
16. 
256. 
65536. 
4294967296. 
# Next, 4 negative ions: 
81. 
6561 
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TABLE 2. (continued) 

43046721. 
120000000. 
# chi (n, n) 
# 64. 

[All 64 elements are 1.0] 
# chit (n) 
# 8 here. 

[AilS elements are 1.0] 
#chi tt 
1. 
# dt eps 
0. 
# dt chi (n, n) 

[All 64 elements are zero] 
# dt chit (n) 

[All 8 elements are zero] 
# dtchi tt 
0. 
# omega(n) 

[All 8 elements are zero] 
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FIGURE 2a. The power spectra of the eight ion species. From left to right, the curves first depart from unity 

in the order of increasing nw [wn(n) in Table 2]. In the order of increasing nw, the signs of the charges in 

Table 2 are +, -, +, -, +, -, -, +. The diffusion modes of the negative ions cause a downward spike in their 

spectra corresponding to their spectra closely approaching zero. Inputs are listed in Table 2. 
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FIGURE 2b. The temperature spectrum (dashed curve) and eight ion-temperature cospectra that lie so near 

to one another that they blend into the single thick curv~- Inputs are listed in Table 2. 
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FIGURE2c. The electron mixing-ratio spectrum (solid curve) and the cospectrum of potential temperature 

with electron mixing ratio (dashed curve). Inputs are listed in Table 2. 
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TABLE 3. Computer inputs for the calculation shown in Figs. 3a-c. See Table 1 for the 
meaning of the symbols. 

# Each variable is preceded by a comment stating its name. 
# n 
2 
# cd 
1000 
# eps 
100 
# nair 
1.654 X 1014 

#temp 
180.65 
# Arrays. Arrays are listed as x(i) or y (j, i) or z (k,j, i), with the 
# first subscript varying fastest, so after y(1, 1) comes y(2, 1) 
# r (n) 

2.000000000000 
1.000000000000 

# s (n) 
1.000000000000 

-1.000000000000 
#wn (n) 
2. 
1 X 1012 

# chi (n, n) 
1. 
1. 
1. 
1. 
# chit (n) 
1. 
1. 
#chitt 
1. 
# dt eps 
0. 
# dt chi (n, n) 
0. 
0. 
0. 
0. 
# dt chit (n) 
0. 
0. 
# dtchi tt 
0. 
# omega (n) 
0. 
0. 
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FIGURE 3a. The positive-ion spectrum (solid curve), the negative-ion spectrum (short-dashed curve), and 

the cospectrum (medium-dashed curve) that is always positive. Inputs are listed in Table 3. 
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FIGURE 3b. The potential temperature-ion cospectra for the first (solid curve) and second (long-dashed 

curve) ions. The short-dashed curve is the potential temperature spectrum. Inputs are listed in Table 3. 
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FIGURE 3c. The electron mixing-ratio spectrum (solid curve) and the cospectrum of potential temperature 

with electron mixing ratio (dashed curve). Inputs are listed in Table 3. 
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TABLE 4. Computer inputs for the calculation shown in Figs. 4a-c. See Table 1 for the 
meaning of the symbols. 

# Each variable is preceded by a comment stating its name. 
# n 
2 
# cd 
1000 
# eps 
100 
#nair 
1.654 X 1014 

#temp 
180.65 
# Arrays. Arrays are listed as x(i) or y(j, i) or z(k,j, i), witb the 
# first subscript vru-ying fastest, so after y (1, 1) cmnes y (2, i) 
# r (n) 

2.000000000000 
1.000000000000 

# s (n) 
1.000000000000 

-1.000000000000 
# wn (n) 
2. 
1 X 1012 

# chi (n, n) 
1. 
-1. 
-1. 
1. 
# chit (n) 
1. 
1. 
# chit t 
1. 
# dt eps 
0. 
# dt chi (n, n) 
0. 
0. 
0. 
0. 
# dt chit (n) 
0. 
0. 
# dtchi tt 
0. 
# omega (n) 
0. 
0. 
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FIGURE 4a. The positive-ion spectrum (solid curve), the negative-ion spectrum (short-dashed curve), and 

the cospectrum (medium-dashed curve) that is negative for x > 0.537. Inputs are listed in Table 4. 
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FIGURE 4b. Potential temperature-ion cospectra for the first (solid curve) and second (long-dashed curve) 

ions. The short-dashed curve is the potential temperature spectrum. Inputs are listed in Table 4. 
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FIGURE 4c. The electron mixing-ratio spectrum (solid curve) and the cospectrum of potential temperature 

with electron mixing ratio (dashed curve). Inputs are listed in Table 4. 
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TABLE 5. Computer inputs for the calculation shown in Figs. Sa-c. See Table 1 for the 
meaning of the symbols. 

# Each variable is preceded by a comment stating its name. 
# n 
2 
# cd 
1000 
# eps 
100 
# nair 
1.654 X 1014 

#temp 
180.65 
# Arrays. Arrays are listed as x(i) or y(j, i) or z(k,j,i), with the 
# first subscript varying fastest, so after y(l, I) comes y(2, I) 
# r (n) 

2.000000000000 
1.000000000000 

# s (n) 
1.000000000000 

-1.000000000000 
# wn (n) 
2. 
I x 1012 

# chi (n, n) 
I. 
-I. 
-I. 
I. 
# chit (n) 
I. 
I. 
#chit! 
I. 
# dt eps 
-I X 10'1 

# dt chi (n, n) 
4.5 X 10·3 

5 X 104 

5.3 X 104 

3 X 104 

# dt chit (n) 
4 X 104 

I x 10·3 

# dtchi tt 
2.3 X 10·3 

# omega (n) 
0. 
0. 
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FIGURE 5a. The positive-ion spectrum (solid curve), the negative-ion spectrum (short-dashed curve), and 

the cospectrum (medium-dashed curve) that is negative for x > 0.537. Inputs are listed in Table 5. 
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FIGURE 5b. Potential temperature-ion cospectra for the first (solid curve) and second (long-dashed curve) 

ions. The short-dashed curve is the potential temperature spectrum. Inputs are listed in Table 5. 
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FIGURE 5c. The electron mixing-ratio spectrum (solid curve) and cospectrum of potential temperature with 

electron mixing ratio (dashed curve) that is negative for x > 0.134. Inputs are listed in Table 5. 
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TABLE 6. Computer inputs for the calculation shown in Figs. 6a-c. See Table 1 for the 
meaning of the symbols. 

# Each variable is preceded by a comment stating its name. 
# n 
2 
# cd 
toOO 
# eps 
100 
#nair 
1.654 X 1014 

#temp 
180.65 
# Arrays. Arrays are listed as x(i) or y(j,i) or z (k,j,i), with the 
# first subscript varjing fastest, so after y(l, 1) comes y(2, 1) 
# r (n) 

2.000000000000 
1.000000000000 

# s (n) 
1.000000000000 

-1.000000000000 
# wn (n) 
2. 
1 X 1012 

# chi (n, n) 
1. 
-1. 
-1. 
1. 
# chit (n) 
1. 
1. 
# chitt 
1. 
# dt eps 
0. 
# dt chi (n, n) 
0. 
0. 
0. 
0. 
# dt chit (n) 
0. 
0. 
# dt chit t 
0. 
# omega (n) 
1 X to·S 
3 X to·3 
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FIGURE 6a. The positive-ion spectrum (solid curve), the negative-ion spectrum (short-dashed curve), and 

the cospectrum (medium-dashed curve) that is negative for x > 0.537. Inputs are listed in Table 6. 
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FIGURE 6b. Potential temperature-ion cospectra for the first (solid curve) and second (long-dashed curve) 

ions. The short-dashed curve is the potential temperature spectrum. Inputs are listed in Table 6. 
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FIGURE 6c. The electron mixing-ratio spectrum (solid curve) and the cospectrurn of potential temperature 

with electron mixing ratio (dashed curve) that is negative for x > 0.111. fuputs are listed in Table 6. 
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TABLE 7. Computer inputs for the calculation shown in Figs. 7a-c. See Table 1 for the 
meaning of the symbols. 

# Each variable is preceded by a comment stating its name. 
#n 
2 
# cd 
toOO 
# eps 
100 
# nair 
1.654 X 1014 

#temp 
180.65 
# Arrays. Arrays are listed as x(i) or y(j,i) or z(k,j,i), with the 
# first subscript varying fastest, so after y(l, 1) comes y(2, 1) 
# r (n) 

2.000000000000 
1.000000000000 

# s (n) 
1.000000000000 

-1.000000000000 
#wn (n) 
2. 
1 X 1012 

# chi (n, n) 
1. 
-1. 
-1. 
1. 
# chit (n) 
1. 
1. 
# chitt 
1. 
# dteps 
-1 X to·' 
# dt chi (n, n) 
4.5 X to·' 
5 X to4 

5.3 X 104 

3 X 104 

# dt chit (n) 
4 X 104 

1 X to·' 
# dtchi tt 
2.3 X to·' 
# omega (n) 
1 X to·' 
3 X to·' 
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FIGURE 7a. The positive-ion spectrum (solid curve), the negative-ion spectrum (short-dashed curve), and 

the cospectrum (medium-dashed curve) that is negative for x > 0.534. Inputs are listed in Table 7. 
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FIGURE 7b. Potential temperature-ion cospectra for the first (solid curve) and second (long-dashed curve) 

ions. The short-dashed curve is the potential temperature spectrum. Inputs are listed in Table 7. 
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FIGURE 7c. The electron mixing-ratio spectrum (solid curve) and the cospectrum of potential temperature 

with electron mixing ratio (dashed curve) that is negative for x > 0.151. Inputs are listed in Table 7. 
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TABLE 8. Computer inputs for the calculation shown in Figs. Sa-c. See Table 1 for the 
meaning of the symbols. 

# Each variable is preceded by a comment stating its name. 
# n . 

2 
# cd 
1000 
# eps 
100 
#nair 
1.654 X 1014 

#temp 
180.65 
# Arrays. Arrays are listed as x(i) or y(j,i) or z(k,j, i), with the 
# first subscript varying fastest, so after y(1, 1) comes y (2, 1) 
# r (n) 

2.000000000000 
1.000000000000 

# s (n) 
1.000000000000 

-1.000000000000 
#wn (n) 
2. 
1 X 106 

# chi (n, n) 
2.7 
1. 
1. 
100. 
# chit (n) 
1. 
1. 
#chit! 
1. 
# dteps 
0. 
# dt chi (n, n) 
0. 
0. 
0. 
0. 
# dt chit (n) 
0. 
0. 
# dtchi tt 
0. 
# omega (n) 
0. 
0. 
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FIGURE Sa. The positive-ion spectrum (solid curve), the negative-ion spectrum (short-dashed curve), and 

the the cospectrum (medium-dashed curve) that is always positive. Inputs are listed in Table 8. 
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FIGURE 8b. Potential temperature-ion cospectra for the first (solid curve) and second (long-dashed curve) 

ions. The short-dashed curve is the potential temperature spectrum. Inputs are listed in Table 8. 
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TABLE 9. Computer inputs for the calculation shown in Figs. 9a--c. See Table 1 for the 
meaning of the symbols. 

# Each variable is preceded by a comment stating its name. 
#n 
2 
# cd 
1000 
# eps 
100 
# nair 
1.654 X 1014 

#temp 
180.65 
# Arrays. Arrays are listed as x(i) or y (j, i) or z (k,j, i), with the 
# first subscript varying fastest, so after y ( 1, 1) comes y (2, 1) 
# r (n) 

2.000000000000 
1.000000000000 

# s (n) 
1.000000000000 

-1.000000000000 
#wn (n) 
2. 
1 X 106 

# chi (n, n) 
2.7 
1. 
1. 
100. 
# chit (n) 
1. 
1. 
# chi tt 
1. 
# dt eps 
-1 X 10"1 

# dt chi (n, n) 
4.5 x 10·' 
5 X 104 

5.3 X 104 

3 X 104 

# dt chit (n) 
4x 104 

1 x 10·' 
# dtchi tt 
2.3 x 10·' 
# omega (n) 
0. 
0. 
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FIGURE 9a. The positive-ion spectrum (solid curve), the negative-ion spectrum (short-dashed curve), and 

the cospectrum (medium-dashed curve) that is always positive. Inputs are listed in Table 9. 
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FIGURE 9b. Potential temperature-ion cospectra for the first (solid curve) and second (long-dashed curve) 

ions. The short-dashed curve is the potential temperature spectrum_ Inputs are listed in Table 9. 
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FIGURE 9c. The electron mixing-ratio spectrum (solid curve) and the cospectrum of potential temperature 

with electron mixing ratio (dashed curve) that is negative for x > 0.134. Inputs are listed in Table 9. 
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TABLE 10. Computer inputs for the calculation shown in Figs. 1 Oa-c. See Table 1 for the 
meaning of the symbols. 

# Each variable is preceded by a comment stating its name. 
# n 
2 
# cd 
1000 
# eps 
100 
# nair 
1.654 X 1014 

#temp 
180.65 
# Arrays. Arrays are listed as x(i) or y (j, i) or z (k,j,i), with the 
# first subscript varying fastest, so after y (1,1) comes y(2, 1) 
# r (n) 

2.000000000000 
1.000000000000 

# s (n) 
1.000000000000 

-1.000000000000 
# wn (n) 
2. 
1 X 106 

# chi (n, n) 
2.7 
1. 
1. 
100. 
# chit (n) 
1. 
1. 
# chi tt 
1. 
# dt eps 
0. 
# dt chi (n, n) 
0. 
0. 
0. 
0. 
# dt chit (n) 
0. 
0. 
# dtchi tt 
0. 
# omega (n) 
1 X 10·5 

3 X 10·3 
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FIGURE lOa. The positive-ion spectrum (solid curve), the negative-ion spectrum (short-dashed curve), and 

the cospectrum (medium-dashed curve) that is always positive. Inputs are listed in Table 10. 
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FIGURE lOb. Potential temperature-ion cospectra for the first (solid curve) and second (long-dashed curve) 
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FIGURE lOc. The electron mixing-ratio spectrum (solid curve) and the cospectrurn of potential temperature 

with electron mixiog ratio (dashed curve) that is negative for x > 0.1 00. Inputs are listed io Table 10. 
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TABLE 11. Computer inputs for the calculation shown in Figs. 11a--c. See Table I for the 
meaning of the symbols. 

# Each variable is preceded by a comment stating its name. 
# n 
2 
# cd 
1000 
# eps 
100 
# nair 
1.654 X 1014 

#temp 
180.65 
# Arrays. Arrays are listed as x(i) or y(j,i) or z(k,j,i), with the 
# first subscript varying fastest, so after y(l, 1) comes y(2, I) 
# r (n) 

2.000000000000 
1.000000000000 

# s (n) 
1.000000000000 

-1.000000000000 
#wn (n) 
2. 
1 X 106 

# chi (n, n) 
2.7 
1. 
1. 
100. 
# chit (n) 
1. 
1. 
# chitt 
1. 
# dteps 
-1 X 10·! 
# dt chi (n, n) 
4.5 X 10·3 

5 X 104 

5.3 X 104 

3 X 104 

# dt chit (n) 
4 X 104 

1 x 10·' 
# dt chit t 
2.3 X 10·3 

# omega (n) 
1 X 10·5 

3 X 10·3 

99 



103 

102 

101 

10° 
:-:-:-:.~.,..,.._-

1 o-1 
,.--._ 

-.:t 
~ 10-2 

\.::) 
1Q·3 

10-4 

1 o-s 

1 o-s 

1 o-7 

10-3 10-2 1Q·1 101 104 

X 

FIGURE lla. The positive-ion spectrum (solid curve), the negative-ion spectrum (short-dashed curve), and 

the cospectrum (medium-dashed curve) that is always positive. Inputs are listed in Table 11. 
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FIGURE llb. Potential temperature-ion cospectra for the first (solid curve) and second (long-dashed curve) 

ions. The short-dashed curve is the potential temperature spectrum. Inputs are listed in Table I L 
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FIGURE !!c. The electron mixing-ratio spectrum (solid curve) and the cospectrum of potential temperature 

with electron mixing ratio (dashed curve) that is negative for x > 0.152. Inputs are listed in Table 11. 
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12. RELATIONSIDP TO RADAR CROSS SECTION AND SCATTERED POWER 

Following Villars and Weisskopf (1955), the differential of power reflected into a solid angle dD. 
from a volume dV given incident power density p0 is 

d~ = p0 cr dV dD. sin2x , 

where cr is the scattering cross section per unit volume and per unit solid angle. To account for the angular 

scattering diagram, we have included the factor sin2x, where xis the angle between the electric vector of 

the incident wave and the direction from the scattering volume to the receiver. The case R >> d is 

considered, where R is range and dis any length dimension of the scattering volume. The solid angle 

sub tended by the receiving antenna of area A is 

A 
t.D. = 

IfF is the cross-sectional area of the incident beam, then the transmitted power is 

P, = Fpo . 

Villars and Weisskopf (1955) considered the case of a scattering layer that is equidistant from identical 

transmitter and receiver antennas. For this case, the volume of a scattering height increment is 

v; = Ft.z 
s sin(S/2) 

where e is the angle between incident and scattered wave vectors. Therefore, integrating d~ over the 

volume 1's and solid angle range t.D. gives, for nearly uniform p0 and cr, 

p Ft.z A . z 
r = Po cr sin(S/2) Rz sm X . 

For backward scatter, we substitute X= rt/2 and 9 = rt, and use P, = p0 F to obtain 

The scattering volume is determined by radar beamwidth and pulse length. However, the scattering 

volume can also be considered to be a smaller volume for which we choose to calculate the contribution to 

the total scattered power. If t.F is the increment of the cross-sectional area on the incident beam, then the 

incident power increment is t.P, = t.F p0 and the scattering volume increment is t.Ys = t.F t.z, where t.z 
is some fraction of the height of the scattering volume. As before, the receiving antenna subtends the solid 

angle A!R2
• The increment of power to the receiver is then 
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!':J.P, 
A 

= !':J.P. cr /':iz-
' Rz 

where cr is the scattering cross section within the increment of the scattering volume. 

Because the definition of the spectra in (53a,b), et seq., are the same as in Hill and Bowhill (1976, 

p. 181), the relationship between cr, as defined by Villars and Weisskopf (1955), and the electron power 

spectrum f(k), as given in (102), is the same as in equation (9.2) of Hill and Bowhill (1976); that is, 

cr = r; 2n2 r 2 f(K) , 

where K is the Bragg wavenumber, and r, is the classical electron radius, namely, 

r, = 2.8 x 10-13 em . 

For backscatter, the Bragg wavenumber is given in terms of the radar's frequency f in megahertz by 

K = 2 2
7t f X 106 

c 

where c = 3 x 108 m s·' is the speed of light. 

Let us denote the above cross section as defined by Villars and Weisskopf (1955) and used by Hill 

and Bowhill (1976) as crvw• that defined by Ottersten (1969) as cr0 T, and that defined by Royrvick and 

Smith (1984) as cr1,_8 • It is useful to relate these definitions. As described by Ottersten (1969), cr0 T is the 

scattered power per unit solid angle, per unit volume, and per unit incident power density. Ottersten (1969) 

also defined another cross section per unit volume T], which is just cr integrated over all solid angles, such 

that lloT = 47t cr0 T for isotropic scattering. Using well-known spectral definitions such as those given by 

Ottersten (1969), one obtains crvw = cr0 T = crR8 /4n; therefore, crRs = lloy· In relating these cross sections, 

it is useful to note that the refractive index n of a plasma is given by n2 = 1- (rop/ro)2
, where 

ro~ = 4n N, e2
/ me is the plasma frequency and co is the radar frequency in rad s ·'. We are concerned with 

thecaseforwhich ffi>> roP such that ro ~ kc, wherekistheradar'swavenumberinradm·'. For ffi>> rop, 
the fluctuations of refractive index n' are approximated by the Taylor series expansion of 

n = [1 - (rop/ro)2
]

112 in terms of electron-concentration fluctuations N;; this gives 

N' 
n' ~ -.!. (ro /ro) 2 ' 

2 P N, 

Now f (K) is an average spectrum over a given volume; hence, cr must be taken as uniform over the 

given volume. It follows that the power ratio in decibels is given by 

(164) 
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Given pulse length D.z, antenna area A, rangeR, radar frequency J, and the calculated electron spectrum 

f(K) from (102), we can evaluate the power ratio, whereas only f and f(K) are needed to evaluate the 

cross section cr. The radar equation (164) is the same as was given by Villars and Weisskopf (1955). The 

reader is cautioned that the radar equation applied to specific radars can differ from (164). For instance, a 

factor accounting for antenna efficiency might be included, or signal-to-noise ratio might be given instead of 

P, I P,. Thus, (164) is for purposes of illustration only. 

13. DISCUSSION 

Equations describing diffusion modes of a multiconstituent collision-dominated plasma with 

negligible magnetic-field effects have been used to obtain continuity equations for the mixing ratios of the 

charged species. A perturbation analysis is used to linearize those equations. The linearized continuity 

equations are used to derive equations for spectra and cospectra of the ionic constituents in terms of which 
the spectrum of electron-concentration fluctuations is expressed on the basis of approximate charge 

neutrality. Charge neutrality is approximate in the sense that the effects of a nonzero Debye length are 

included. Solutions for spectra and cospectra are obtained and explained in section 11. It is seen that 

massive ions can cause electron fluctuations at small scales. If the ions are sufficiently massive, the De bye 

shielding effect can determine the smallest scales on which there are electron-concentration fluctuations. 

For more than one species of ion, the turbulent advection is in no sense characterized by a single Schmidt 

number. 
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APPENDIX: COLLISION RATE FOR SPECIES a 

Transport coefficients f.! a, Da, and ~. appear in many equations in this report. These transport 

coefficients are defined in terms of the momentum-transfer collision rate for species n, which is denoted by 

va. Here, we describe the calculation of va. We adopt the collision model of the polarization interaction 

with an elastic sphere repulsion. This model is analyzed in a classic paper by Langevin (1905), who reduced 

the calculation to a single graph supplemented with analytic formulas. A translation of Langevin's (1905) 

paper is given by McDaniel (1964), but the graph in the translation has slight inaccuracies. A discussion of 

ion collision processes for the lower ionosphere and applicability of the polarization interaction is given by 

Hill and Bowhill (1977b). 

Air molecules are by far the most numerous collision partners; thus, ion-ion and ion-electron 

collisions need not be considered. The total collision rate is the sum of contributions of the three most 

numerous constituents of air, namely, nitrogen (N2), oxygen (02 ), and argon (A-.r). 

The parameters of these constituents of air that are required for the calculation of v a are given in 

Table Al. These parameters are abundance (A), polarizability (K), mass (m), and radius (r). We calculate 

the collision rate for a given ion with each of the three constituents of air and sum these collision rates in 

proportion to the abundance (A) of the constituents (see Table A1) to obtain va. 

TABLE Al. Properties of N2, 0 2, and Ar. 

Abundance1 Polarizability' 

(A) 

N2 0.78 

02 0.21 

Ar 0.01 

1Abundance (A) is given as a fraction of N. 
'Polarizability (K) is in units of 10·24 em'. 

(K) 

1.74 

1.57 

1.64 

Mass* 

(m) 

28m. 

32m. 

40m. 

1 Mass (m) is given in units of the nucleon mass, m. = 1.67 x 10·24 gr. 
§!Radius (r) is given in units of w·• em (i.e., the Angstrom). 

Radius11 

(r) 

1.5 

1.5 

0.75 

The ion is assumed to be a hydrated proton having nw water molecules (H20). The mass of this ion 

is therefore rna= (18 nw + 1) mn' where mn = 1.67 X 10-24 gr is the nucleon 

mass. The radius of this ion is taken to be ra = 10-8 em if nw = 1 and, for nw > 1, it is 
ra = (1.93 x 10-8 em) n~3 , the latter being the radius of an ice sphere of mass density 1 gr em·'. Any 

other type of ion requires changing only the relationship between mass m. and radius r.; this relationship, 

above, is parametric with the parameter nw. 
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If the ion is very large, it becomes likely that it will simultaneously collide with more than one neutral 

air molecule, whereas Langevin's model is for single-molecule collisions. The interaction distance of an air 

lecule with a very large ion is probably not greater than 20 angstroms ( 1 A = 1 o·• em). Hence, we need the 

likelihood that two air molecules are within a shell that is 20 A thick and that has the radius of the ion. This 

shellhasavolumeof (4n/3) [(ra + 2x w-7 em)3 - r~] ~ 2.5x w-6 em r~. The volume per air 

molecule is N -1. If the volume of the interaction shell exceeds N -1, then multiple simultaneous collisions 

become likely. This condition is 2.5 x 10-6 em r~ > N -1. For N ~ 2 x 1014 em-3, the condition is 

ra > 45 j.lm. Ions that have radii less than 0.45 j.lm are considered. Therefore, the single-molecule collision 

model is applicable. 

The approximation of colliding elastic spheres requires the introduction of the necessarily 

approximate radii rand ra. Certainly, 0 2 , N2 , and a hydrated proton are not spherical. Moreover, a 

collision with a multiply hydrated proton need not be elastic. A multiply hydrated proton can have many 

closely spaced eneigy levels or have energy bands that can absorb or add kinetic energy during an in1pact. 
Nevertheless, the polarization interaction with an elastic-sphere repulsion is the most reasonable collision 

model that can be attained without undue labor. 

Langevin's (1905) graph gives a parameter that he called (3/16 Y) as a function of f.L-1 , the latter 

being defined as 

where K is polarizability as given in Table AI, and recall that Tis air temperature in energy units. 

Langevin's graph is reproduced in Fig. A1; he obtained the graph by integration using graphical methods. 

Now f.L-2 is proportional to the ratio of kinetic energy to the potential energy of the polarization interaction 

when the two spheres touch. Thus, for large f.L- 1 the collision is essentially an elastic-sphere collision with 

negligible effect of the polarization interaction, in which case (3/16 Y) ~ 3 I ( 4 f.L- 1). For small f.L- 1, the 

collision is essentially the polarization interaction with negligible elastic repulsion, in which case (3/16 Y) 

= 0.505. As seen in Fig. AI, at f.L- 1 = 0.41 the parameter (3/16 Y) has a local maximum of about 0.585. 

This maximum corresponds to increased mobility of the ion because the attractive polarization interaction is 

partially compensated by the elastic-sphere repulsion. We have digitized Langevin's graph of (3/16 Y) 

versus f.L-1 forO,; f.L-1 ,;4.03. Weuseinterpolationtoobtain(3/16Y)foragiven f.L-1 . For f.L-1 >4,the 

elastic-sphere asymptotic formula is used; in comparison with Langevin's graph, it is accurate to better than 

0.1% at f.l-1 ;, 4. 
The algorithm for the contribution ·of any one of the air constituents in Table AI to the collision 

frequency v a is 

8 AN (r + r ) 2 M (2n T)112 

3 a 
for f.l-1 > 4 (Ala) 

2AN M ( 2)112 
(3/16 Y) 1l:K qa (Alb) 
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where 

M - ( _m_m_:a::_) 112 m~ 1 

m+ma 

Of course, AN is the number of molecules per unit volume of the constituent of air. Recall that A, K, m, and 

rare given in Table A1; N, T, ma, and qa are described in the notation list; and (3/16 Y), jl-l, and ra are 

described in this Appendix. Note that Il-l is a different value for each of the three constituents in Table Al. 

The sum of the three contributions from (A1a,b) gives v a in units of 8 1
• 

In Fig. A2, we show D a = T I ma v a as a function of nw. Of course, use of nw as the abscissa is 

similar to use of ma or r: for the abscissa. Cases for two temperatures and single-charged (Sa= 1) and 

quintup!e-ch~rged (Sa = 5) ions are shown in Fig. A2. The asymptote for very large nw (hence, very large 

ma and r:) is v a oc n~213 • A line of slope -2/3 is shown in Fig. A2 to indicate this asymptote. The 

decrease in the lowest curve in Fig. A2 for nw :> 10 is caused mainly by the variation of 1 I (ma M). The 

maximum of (3/16 Y) at jl-l ~ 0.41 corresponds approximately to nw between 1 and 2 for Sa= 1 and 

nw ~ 31 for Sa = 5. Values of v a (and, hence, D a) calculated solely from the polarization interaction and 

solely from the elastic-sphere repulsion are equal at jl-l = 1.485, which corresponds to nw = 17 for Sa= 1 

and to nw = 300 for sa= 5. 
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FIGURE Al. Langevin's (1905) graph of (3/16 Y) versus J.l-1 is the solid curve. Elastic-sphere repulsion 

without polarization interaction is the dashed curve. The polarization interaction without elastic-sphere 

repulsion is the intercept at J.l-1 ~ 0, where (3/16 Y) ~ 0.505. 
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I Sal = 5 

FIGURE A2. Diffusion coefficient versus number of water molecules in tbe hydronium ion. The solid curve 

is at T= 140 K, N= 1.282 1014 molecules I cm3
, and I Sal = 1. The long- and medium-dashed curves are 

both T= 180.65 K andN= 1.654 1014 molecules I em'. The long-dashed curve is I Sal = 1, while the 

medium-dashed curve is I Sal = 5. The short-dashed line is 60,000 x n-.;13
. 
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